期刊文献+

考虑多场景运行的不平衡主动配网电池储能系统两阶段优化配置 被引量:7

Two-stage optimal placement of BESS in an unbalanced active distribution network considering multi-scenario operation
下载PDF
导出
摘要 电池储能系统(battery energy storage system,BESS)的优化配置决定了其功能是否能得到有效利用。现有BESS配置研究通常基于平衡网络模型和极限运行工况假设,但实际配电网具有显著不平衡特性,且负荷和分布式发电不确定性导致网络运行工况复杂。同时,BESS配置优化问题求解常用的启发式算法或数学规划方法无法兼顾效率和精度。针对上述问题,提出了一种考虑源荷不确定性的不平衡主动配电网BESS两阶段混合优化配置模型。首先,建立两阶段的BESS优化配置模型,第一阶段旨在优化BESS配置容量以降低投资和维护成本,第二阶段通过优化BESS充放电计划以降低网损和增加削峰填谷收益。然后,采用结合粒子群优化算法和二阶锥规划的混合求解策略求解上述储能配置优化问题,以达到优势互补、整体提升的计算效果。最后,基于澳大利亚某配电网对所提BESS两阶段优化配置模型的有效性和优越性开展仿真验证。 The placement of a battery energy storage system(BESS)determines whether its capabilities can be effectively exploited.However,existing BESS placement studies are commonly based on a balanced network model and a single(e.g.extreme)operation scenario,while practical distribution networks are unbalanced,with complicated operation scenarios due to DG and load uncertainties.In addition,BESS placement problems are usually solved by heuristic search or mathematical programming methods.These,however,cannot balance well the efficiency and accuracy of solutions.To address these challenges,this paper proposes a two-stage hybrid optimization-based BESS placement model for unbalanced active distribution networks,considering the uncertainty of load and DG under multiple operation scenarios.Specifically,the optimal BESS capacities are decided in the first stage for minimizing costs of BESS primary investment and maintenance,while the optimal BESS charging/discharging schedules are determined in the second stage to maximize savings by loss reduction and load shifting.Then,a hybrid solution strategy of particle swarm optimization and second order cone programming is employed to solve the above BESS placement problem and thus to realize optimal and holistic calculation effect.Finally,a real Australian distribution network is simulated to verify the effectiveness and superiority of the proposed two-stage BESS placement.
作者 苏向敬 张传坤 符杨 李振坤 米阳 SU Xiangjing;ZHANG Chuankun;FU Yang;LI Zhenkun;MI Yang(School of Electrical Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《电力系统保护与控制》 EI CSCD 北大核心 2023年第10期88-97,共10页 Power System Protection and Control
基金 国家自然科学基金面上项目资助(61873159) 上海市绿色能源并网工程技术研究中心项目资助(13DZ2251900)。
关键词 电池储能系统 不平衡配电网 多运行场景 优化配置 battery energy storage system unbalanced distribution network multi-scenario operation optimal placement
  • 相关文献

参考文献15

二级参考文献192

  • 1孙钰,袁强,温小飞,董良雄,鲁永强.基于雨流计数法及Corten Dolan准则的轴承疲劳寿命预测[J].船舶工程,2020,42(1):68-73. 被引量:12
  • 2伍忠东,高新波,谢维信.基于核方法的模糊聚类算法[J].西安电子科技大学学报,2004,31(4):533-537. 被引量:75
  • 3赵川,李永,吴琼,刘文颖,杨以涵,马骞.多智能体型电网调度决策支持系统[J].电网技术,2006,30(22):59-66. 被引量:11
  • 4王守相,黄丽娟,王成山,李东.分布式发电系统的不平衡三相潮流计算[J].电力自动化设备,2007,27(8):11-15. 被引量:101
  • 5Teng J H, Luan S W, Lee D J, et al. Optimal charging/discharging scheduling of battery storage systems for distribution systems interconnected with sizeable PV generation systems[J]. IEEE Trans on Power Systems, 2013, 28(2): 1425-1433.
  • 6Oudalov A, Cherkaoui R, Beguin A. Sizing and optimal operation of battery energy storage system for peak shaving application[C]//IEEE Proceedings of Power Tech 2007. Lausanne, Switzerland: IEEE, 2007: 621-625.
  • 7Tewari S, Mohan N. Value of NAS energy storage toward integrating wind: results from the wind to battery project[J]. IEEE Trans on Power Systems, 2013, 28(1): 532-541.
  • 8Tran Duoong, Khambadkone A M. Energy management for lifetime extension &energy storage system in micro-grid applications[J]. IEEE Trans On Smart Grid, 2013, 4(3): 1289-1296.
  • 9Roberts B, Mcdowall J. Commercial successes in power storage[J]. IEEE Power and Energy Magazine, 2005, 3(2): 24-30.
  • 10Hartmann B, Dan A. Cooperation of a grid-connected wind farm and an energy storage unit-demonstration of a simulation tool[J]. IEEE Trans on Sustainable Energy, 2012, 3(1): 49-56.

共引文献543

同被引文献160

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部