摘要
低容量和低倍率限制了电池型超级电容阳极材料的大规模应用.本文通过构建一种具有半共格异质界面特性的Fe_(2)O_(3)/FeSe_(2)纳米结构作为先进的阳极材料来解决这一瓶颈.系列表征和第一性原理计算表明,这种特殊的异质界面不仅能自发产生较强的内建电场,从而提高电子传递速率和OH^(-)离子的吸附能力;还可使得活性物质与OH^(-)之间发生更多的氧化还原反应,并且使该反应体系更容易进行.基于上述优势,所制备出的阳极材料的最大比容量为199.2 mA h g^(-1)(1 A g^(-1)),并且在10 A g^(-1)下仍能保持105.8 mA h g^(-1),同时,经历5000次循环后,其比容量可维持初始值的90.2%.此外,以Fe_(2)O_(3)/FeSe_(2)作为阳极组装的非对称超级电容器在0.8 kW kg^(-1)时的能量密度为52.55 Wh kg^(-1),即使经历15,000次循环,该器件还能维持初始容量的91.2%.我们的工作为设计大容量和高倍率性能的电池型超级电容器阳极材料提供了一种创新性的策略,有望推动过渡金属化合物在储能系统中的大规模应用.
The low capacity and rate capability of the battery-type supercapacitor anode prevent its widespread application.In this paper,we construct a semicoherent heterojunction of Fe_(2)O_(3)/FeSe_(2)as an advanced battery-type supercapacitor anode to overcome the bottleneck.A series of characterization and first-principles calculations confirm that the special heterointerface manipulation automatically generates a stronger inherent electric field,thereby enhancing the electron transport rate and the OH−adsorption capacity.In addition,it facilitates additional redox reactions between the active materials and OH−and makes the reaction system easier to execute.Taking advantage of these benefits,the prepared anode has a high specific capacity of 199.2 mA h g^(−1)(1 A g^(−1))and retains 90.2%of its initial capacity after 5000 cycles at 105.8 mA h g^(−1)(10 A g^(−1)).In addition,an asymmetric supercapacitor device is fabricated with the prepared Fe_(2)O_(3)/FeSe_(2)as the anode,which provides a maximum energy density of 52.55 W h kg^(−1)at 0.8 kW kg^(−1)and a capacity retention of 91.2%even after 15,000 cycles.In our work,a novel strategy for the optimal design of a battery-type supercapacitor anode with a large capacity and superior rate capability is conceived,significantly advancing the widespread application of transition metal compounds in energy storage systems.
作者
宋江楠
刘婷
何银娜
王艺伟
张玉晓
孟阿兰
袁相程
王磊
李桂村
赵健
李镇江
Jiangnan Song;Ting Liu;Yinna He;Yiwei Wang;Yuxiao Zhang;Alan Meng;Xiangcheng Yuan;Lei Wang;Guicun Li;Jian Zhao;Zhenjiang Li(College of Electromechanical Engineering,College of Materials Science and Engineering,Qingdao University of Science and Technology,Qingdao 266042,China;College of Chemistry and Molecular Engineering,Qingdao University of Science and Technology,Qingdao 266042,China;School of Materials Science and Engineering,Beihang University,Beijing 100191,China)
基金
supported by the National Natural Science Foundation of China(52072196,52002199,52002200,and 52102106)
the Major Basic Research Program of Natural Science Foundation of Shandong Province(ZR2020ZD09)
the Natural Science Foundation of Shandong Province(ZR2019BEM042 and ZR2020QE063)
the Innovation and Technology Program of Shandong Province(2020KJA004)
Taishan Scholars Program of Shandong Province(ts201511034)
the Postdoctoral Innovation Project of Shandong Province(202101020)。