期刊文献+

锂离子动力电池热失控机理及热管理技术研究进展 被引量:8

Thermal Runway Mechanism and Research Progress on Thermal Management of Lithium-ion Power Batteries
原文传递
导出
摘要 锂离子动力电池作为新能源汽车的直接能量来源,对整车的安全性和耐用性起到决定性作用。随着社会发展对动力电池能量密度和使用环境要求的不断提高,以热失控为代表的动力电池安全事故频发,严重限制新能源汽车的大规模普及。因此,深入研究动力电池热失控机理并优化相应的热管理技术成为亟待解决的问题。本文从锂离子动力电池热失控现象出发,系统总结热失控的演化过程,阐明机械、热、电及内短路导致电池热失控的机制。基于此,本文全面总结目前对锂离子动力电池热管理技术的研究思路,并对未来提高锂离子动力电池系统安全性的策略进行展望。 Lithium ion power batteries(LIPSs),as the direct energy source of new energy vehicle,directly affects the reliability and durability of vehicle.With the rapid improvement of LIPSs in energy density and application environment,the safety accidents characterized by thermal runaway have occurred frequently,which seriously limit the wide application of vehicles.Therefore,studying the thermal runway mechanism and optimize the corresponding thermal management technology is becoming increasingly urgent for the development of vehicles.From a phenomenon of thermal runway,a comprehensive evolution process of thermal runaway within LIPSs used in vehicle is summarized,clarifying the various abuse condition and failure mechanisms.Herein,up-to-date thermal management technology to improve the safety of lithium ion power batteries are summarized comprehensively,with prospection of the strategies to improve the safety of LIPS system in the future.
作者 陈素华 白莹 Suhua Chen;Ying Bai(School of Physics and Electronics,Henan University,Kaifeng 475004)
出处 《中国科学基金》 CSCD 北大核心 2023年第2期187-198,共12页 Bulletin of National Natural Science Foundation of China
基金 国家自然科学基金项目(52102239,52072112,51672069)的资助。
关键词 锂离子动力电池 热失控 热管理 内短路 lithium ion power batteries thermal runaway thermal management internal short circuit
  • 相关文献

参考文献12

二级参考文献91

  • 1陈玲,李雪莉,赵强,蔡文斌,江志裕.双向脉冲充电法对锂枝晶生成的抑制[J].物理化学学报,2006,22(9):1155-1158. 被引量:8
  • 2Ding F,Xu W,Graff G L,et al.Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J].J.Am.Chem.Soc.,2013,135:4450-4456.
  • 3Mayers M Z,Kaminski J W,Miller T F.Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J].J.Phys.Chem.C,2012,116:26214-26221.
  • 4Aryanfar A,Brooks D,Merinov B V,et al.Dynamics of lithium dendrite growth and inhibition:Pulse charging experiments and monte carlo calculations[J].J.Phys.Chem.Lett.,2014,5:1721-1726.
  • 5Chandrashekar S,Trease N M,Chang H J,et al.7Li MRI of Li batteries reveals location of microstructural lithium[J].Nature Materials,2012,11:311-315.
  • 6Schweikert N,Hofmann A,Schulz M,et al.Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes:Investigation by electrochemical impedance spectroscopy,scanning electron microscopy,and in situ 7Li nuclear magnetic resonance spectroscopy[J].J.Power Sources,2013,228:237-243.
  • 7Honbo H,Takei K,Ishii Y,et al.Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding[J].J.Power Sources,2009,189:337-343.
  • 8Langenhuizen N P W.The effect of mass transport on Li deposition and dissolution[J].J.Electrochem.Soc.,1998,145(9):3094-3099.
  • 9Steiger J,Kramer D,M?nig R.Microscopic observations of the formation,growth and shrinkage of lithium moss during electrodeposition and dissolution[J].Electrochim.Acta,2014,136:529-536.
  • 10Liu X H,Zhong L,Zhang L Q,et al.Lithium fiber growth on the anode in a nanowire lithium ion battery during charging[J].Appl.Phys.Lett.,2011,98:183107.

共引文献133

同被引文献67

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部