期刊文献+

三维点云语义分割方法综述

A Survey of Semantic Segmentation for 3D Point Clouds
下载PDF
导出
摘要 近年来,随着3D扫描设备的升级换代,点云数据的获取愈发便捷。相较于图像,点云数据包含更为丰富的空间信息和几何信息,但由于点云数据具有无序性和非结构化特征,导致点云语义分割方法发展受限。针对以上问题,分别从传统方法和基于深度学习的方法对点云语义分割算法进行总结与介绍。 In recent years,with the upgrading of 3D scanning equipment,the acquisition of point cloud data is becoming more convenient.Compared with images,point cloud data contains more abundant spatial and geometric information.However,due to the disordered and unstructured characteristics of point cloud data,the development of point cloud semantic segmentation methods is limited.Aiming at the above problems,the paper summarizes and introduces the point cloud semantic segmentation algorithm from the traditional method and the method based on deep learning.
作者 冯站银 FENG Zhanyin(School of Advanced Manufacturing,Fuzhou University,Quanzhou 362200,China;Chinese Academy of Sciences,Quanzhou Institute of Equipment Manufacturing,Quanzhou 362216,China)
出处 《电视技术》 2023年第3期140-143,148,共5页 Video Engineering
关键词 点云 语义分割 深度学习 point cloud semantic segmentation traditional method deep learning
  • 相关文献

参考文献1

二级参考文献3

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部