期刊文献+

双目立体视觉研究进展与应用 被引量:5

Research Progress on Binocular Stereo Vision Applications
原文传递
导出
摘要 双目立体视觉模仿人类视觉系统对环境进行三维感知,通过对校正后的左右图像进行立体匹配获取两幅图像的视差,再根据三角测量原理计算出场景的深度,在近几十年中一直是计算机视觉领域的研究热点,取得了一系列的进展。传统的立体匹配方法采用手工设计的特征进行立体匹配,研究表明,这类方法对弱纹理或重复纹理区域以及遮挡区域表现不佳。近年来,基于深度学习的立体匹配方法取得了显著的进展,表现出了强大的应用潜力。本综述对这一不断发展的领域进行全面的调研,讨论不同方法之间的优点和局限性,介绍市面上的双目产品,并展望该领域的研究与应用前景。 Binocular stereo vision simulates the human visual system to perceive the environment in three dimensions.The parallax between two images can be obtained by stereo-matching the corrected left and right images and calculating the scene depth based on the triangulation principle.This area has been identified as a research hotspot in computer vision and has made significant progress in the past few decades.Traditional stereo matching methods use hand-designed features that perform poorly in weak or repeated texture and occlusion areas.Recently,stereo matching methods based on deep learning have significantly progressed,showing strong application potential.In this review,we conducted a comprehensive survey on this developing field,discussed the advantages and limitations of the different methods,introduced the binocular products currently on the market,and assessed the research and application prospects in this field.
作者 杨晓立 徐玉华 叶乐佳 赵鑫 王飞 肖振中 Yang Xiaoli;Xu Yuhua;Ye Lejia;Zhao Xin;Wang Fei;Xiao Zhenzhong(Orbbec Inc,Shenzhen 518062,Guangdong,China;Shenzhen Oxin Technology Co.,Ltd.,Shenzhen 518062,Guangdong,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2023年第8期170-186,共17页 Laser & Optoelectronics Progress
基金 河套深港科技创新合作区深圳园区科研及创新创业项目(HZQB-KCZYB-2020098)。
关键词 立体视觉 立体匹配 深度学习 binocular stereo stereo matching deep learning
  • 相关文献

参考文献7

二级参考文献84

  • 1王年,范益政,鲍文霞,韦穗,梁栋.基于图割的图像匹配算法[J].电子学报,2006,34(2):232-236. 被引量:27
  • 2贾阳,陈建新,张熇.月面巡视探测器关键技术分析[J].航天器工程,2006,15(3):54-58. 被引量:24
  • 3Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002, 47(1/2/3): 7-42.
  • 4Boykov Y, Kolmogorov V. An experimental comparison of mincut/max-flow algorithms for energy minimization in vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(9): 1124-1137.
  • 5Hong L, Chen G. Segment-based stereo matching using graph cuts[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2004: 74-81.
  • 6Deng Y, Yang Q, Lin X Y, et al. Stereo correspondence with occlusion handling in a symmetric patch-based graph-cuts model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 1068-1079.
  • 7Kolmogorov V. Graph based algorithms for scene reconstruction from two or more views[D]. Ithaca, NY, USA: Cornell University, 2003.
  • 8Kolmogorov V, Zabih R. Computing visual correspondence with occlusions using graph cuts[C]//IEEE International Conference on Computer Vision. Piscataway, N J, USA: IEEE, 2001: 508-515.
  • 9Greig D, Porteous B, Seheult A. Exact maximum a-posteriori estimation for binary images[J]. Journal of the Royal Statistical Society, Series B, 1989, 51(2): 271-279.
  • 10Ford L R, Fulkerson D R. Flows in networks[M]. USA: Princeton University Press, 1962.

共引文献220

同被引文献63

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部