摘要
针对反坦克雷场作战效能评估问题,提出了基于哈里斯鹰算法(HHO)优化蒙特卡洛神经网络(MCNN)的反坦克雷场作战效能评估方法。首先,介绍了IHHO算法和蒙特卡洛神经网络的基本原理和算法流程;然后,对反坦克雷场效能评估的主要影响因素进行分析,归纳总结了反坦克雷场的作战效能评估的指标体系;最后,构建了IHHO-MCNN神经网络评估模型。仿真实验结果表明,该模型可以有效对反坦克雷场进行效能评估。
Aiming at the problem of operational effectiveness evaluation of anti-tank minefield,a method of operational effectiveness evaluation of anti-tank minefield based on Harris Hawks Optimization(HHO)optimized Monte Carlo neural network(MCNN)is proposed.Firstly,the basic principles and algorithm flow of IHHO algorithm and Monte Carlo neural network are introduced.Then the main influencing factors of the effectiveness evaluation of anti-tank minefield are analyzed,and the index system of the effectiveness evaluation of anti-tank minefield is summarized.Finally,the IHHO-MCNN neural network evaluation model is constructed.The simulation results show that the model can effectively evaluate the effectiveness of anti-tank minefield.
作者
李众元
邬建华
孔新立
唐海洲
陈威
LI Zhongyuan;WU Jianhua;KONG Xinli;TANG Haizhou;CHEN Wei(Army Engineering University of PLA,Nanjing 210007,China;Training Base of PAP,Beijing 101500,China)
出处
《指挥控制与仿真》
2023年第3期87-93,共7页
Command Control & Simulation
关键词
反坦克雷场
效能评估
哈里斯鹰算法
蒙特卡洛神经网络
多指标评价
anti-tank minefield
effectiveness evaluation
Harris Hawks Optimization
monte carlo neural network
multiple index evaluation