摘要
针对低快照数和较低信噪比条件下多信号到达方向(DOA)估计性能下降问题,提出了基于深度学习的离格DOA估计方法。选择具有特殊结构的非均匀阵列以提高阵列自由度,将样本协方差矩阵建模为真实协方差矩阵的噪声版本,利用堆叠降噪自动编码器(SDAE)重构出新协方差矩阵,最后结合超分辨率算法实现DOA估计。仿真结果表明:在低快照数为10及较低信噪比2 dB情况下,数据先采用SDAE进行处理再进行DOA估计,多目标DOA估计准确率能达到92.06%,相对于传统方法及深度神经网络(DNN)分别提高了55.39%,25.025%。
Aiming at the performance degradation problem of multi-signal direction of arrival(DOA)estimation under the conditions of low snapshots and low signal-to-noise ratio,an off-frame DOA estimation method based on deep learning is proposed.Select a non-uniform array with a special structure to increase the degree of freedom of the array,model the sample covariance matrix as a noise version of the real covariance matrix,and use the stacked denoising auto encoder(SDAE)to reconstruct the new covariance matrix.Finally,DOA estimation is achieved by combining with the super-resolution algorithm.The simulation results show that when the number of snapshots is 10 and the low signal-to-noise ratio is 2 dB,the data is firstly processed by SDAE and then DOA estimation is done.The accuracy of multi-target DOA estimation can reach 92.06%,compared with traditional methods and DNN,which is increased by 55.39%and 25.025%,respectively.
作者
禄宇媛
钱蓉蓉
任文平
卢松琴
LU Yuyuan;QIAN Rongrong;REN Wenping;LU Songqin(School of Information Science and Engineering,Yunnan University,Kunming 650500,China)
出处
《传感器与微系统》
CSCD
北大核心
2023年第6期120-123,128,共5页
Transducer and Microsystem Technologies
基金
国家自然科学基金青年科学基金资助项目(61701433)
云南省科技厅面上资助项目(2018FB099)
云南大学研究生科研创新项目(20200309)。
关键词
到达方向估计
低快照数
堆叠降噪自动编码器
协方差矩阵重构
direction-of-arrival(DOA)estimation
low snapshots numbers
stacked denoising auto encoder(SDAE)
covariance matrix reconstruction