期刊文献+

水蒸气等离子体诱导凝结分子动力学研究

Molecular Dynamics Study on Condensation Induced by Water Vapor Plasma
下载PDF
导出
摘要 本文采用分子动力学方法初步讨论了水蒸气非平衡态等离子体形成机理和增强凝结机理。非平衡态等离子体放电部分建立水蒸气放电模型,基于该过程获得等离子体中的主要荷电粒子类型为O−,OH−和H_(2)O+。采用密度泛函理论OH−和H2O+的电荷分布进行理论计算。采用SPC/E力场对凝结过程进行分子动力学模拟。分别计算在凝结过程中,这些荷电粒子诱导成核的增长过程。将该微观过程与宏观理论相对照,初步获得等离子体诱导蒸汽凝结的微观机理。 The formation mechanism and enhanced condensation mechanism of water vapor nonequilibrium plasma are discussed by the molecular dynamics method.In the nonequilibrium plasma discharge part,the water vapor discharge model is established.Based on this process,the main types of charged particles in the plasma are O−,OH−and H_(2)O+.The density functional theory is used to calculate the charge distribution of OH−and H_(2)O+.The SPC/E force field was used to simulate the condensation process.The nucleation process induced by these charged particles in the condensation process is calculated,respectively.Compared with the macroscopic theory,the microscopic mechanism of plasma-induced vapor condensation is obtained.
作者 李森 徐瑶 张正宇 陶正德 马婷婷 何鑫 LI Sen;XU Yao;ZHANG Zhengyu;TAO Zhengde;MA Tingting;HE Xin(School of Petroleum and Natural Gas Engineering,School of Energy,Changzhou University,Changzhou 213000,China;School of Petroleum Engineering,Northeast Petroleum University,Daqing 163318,China;Vnuo Certification&Testing Co.,Ltd.,Suqian 223600,China)
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2023年第5期403-409,共7页 Chinese Journal of Vacuum Science and Technology
基金 黑龙江省博士后资助面上项目(LBH-Z20118) 国家自然科学基金项目(51706023)。
关键词 等离子体 蒸汽凝结 成核 分子动力学 Plasma Vapor condensation Nucleation Molecular dynamics
  • 相关文献

参考文献2

二级参考文献36

  • 1Pohl H. Dielectrophoresis. New York: Cambridge University Press, 1978
  • 2Arnold W M, Zimmermann U. Electro-rotation-development of a technique for dielectric measurements on individual cells and particles. J Electrostat, 1988, 21 (2): 151 -191
  • 3Wang X B, Huang Y, Becker F F, et al. A unified theory of dielectrophoresis and traveling wave dielectrophoresis. J Phys D Appl Phys, 1994, 27(7): 1571-1574
  • 4Castellanos A, Ramos A, Gonzalez A, et al. Electrohydrodynamics and dielectrophoresis in micro-systems: scaling laws. J Phys D Appl Phys, 2003, 36(20): 2584-2597
  • 5Zheng L F, Li S D, Burk P J, et al. Towards single molecule manipulation with dielectrophoresis using nanoelectrodes. In: Proceedings of the 3rd IEEE Conference on Nanotechnology. SanFrancisco: IEEE, 2003, 1(12): 437-440
  • 6Zheng L F, Brody J B, Burke P J. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly, Biosens. Bioelectron, 2004, 20(3): 606-619
  • 7Morgan H, Holmes D, Green N G. 3D focusing of nanoparticles in microfluidic channels, lEE Proc Nanobiotech, 2003, 150(2): 76-81
  • 8Li W H, Du H, Chen D F. et al. Analysis of dielectrophoretic electrode arrays for nanoparticle manipulation. Comp Mater Sci, 2004, 30(3-4): 320-325
  • 9Kim J E, Han C S. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology, 2005, 16(10): 2245-2250
  • 10Tuukkanen S, Kuzyk A, Toppari J J, et al. Dielectrophoresis of nanoscale dsDNA and humidity effects on its electrical conductivity. Appl Phys Lett, 2005, 87(18): 183102-1-183102-3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部