摘要
【目的】氮是南方黏瘦型中低产田重要的限制因子。研究长期施肥对黄泥田团聚体中氮素累积及有机氮组成的影响,为合理培肥及土壤氮库管理提供依据。【方法】采集黄泥田36年定位试验中不施肥(CK)、单施化肥(NPK)、化肥+牛粪(NPKM)、化肥+全量稻秸还田(NPKS)4种处理耕层土壤,采用湿筛和Bremner有机氮分级方法,分析团聚体氮素累积与有机氮组分含量及分配的变化。【结果】施肥处理>2 mm团聚体全氮含量较CK显著增加12.7%—51.9%(P<0.05);NPKM与NPKS处理>2 mm团聚体对原土全氮累积贡献率较CK分别显著提高24.7与20.0个百分点(P<0.05)。施肥处理>2 mm团聚体酸解性氮与非酸解性氮含量分别较CK增加10.1%—36.3%与20.7%—100.5%,并相应提高两组分对原土全氮累积贡献率,NPKM与NPKS处理增加尤为明显。对于>2 mm团聚体,施肥处理酸解铵态氮含量较CK显著增加17.2%—40.4%(P<0.05),以NPKM处理增加最为明显;酸解氨基酸态氮与酸解未知态氮含量分别以NPKS与NPKM处理增加最为明显,分别较CK显著提高24.0%与52.1%(P<0.05)。>2 mm与0.25—2 mm团聚体的非酸解性氮及酸解铵态氮与相应粒级团聚体中的碱解氮含量呈显著正相关(P<0.05)。配合稻秸还田较配施牛粪更有利于>2 mm团聚体非酸解性氮的累积。配施牛粪对提高>2 mm团聚体酸解铵态氮、酸解未知态氮含量与对原土全氮累积贡献率最为明显,配合稻秸还田则对提高酸解氨基酸态氮含量及对原土全氮累积贡献最为明显。冗余分析表明,水稻氮吸收量受>2 mm与0.25—2 mm团聚体非酸解性氮组分影响较大,NPKM和NPKS处理水稻氮吸收量受土壤有机氮组分影响高于NPK与CK处理。【结论】长期施肥增加了黄泥田耕层土壤>2 mm团聚体全氮含量及对原土全氮累积贡献率,有机无机肥配施尤为明显。>2 mm团聚体中非酸解性氮、酸解性氮及酸解铵态氮含量与该团聚体中碱解氮含量以及水稻氮吸收量关系密切,是重要的有效氮库。
【Objective】Nitrogen is an important limiting factor for soil productivity in sticky and thin medium-low-yield paddy soil in southern China.In order to provide the basis for reasonable fertilization and soil nitrogen pool management,the effects of long-term fertilizations on nitrogen accumulations and organic nitrogen components in soil aggregates in a yellow-mud paddy soil were investigated.【Method】In the 36th year,soil samples from the plough layer under different fertilization treatments in the long-term experiment of yellow-mud paddy soil were collected to analyze the nitrogen accumulation and the content of organic nitrogen components as well as their distributions in aggregates by wet screening and Bremner organic nitrogen classification method.The treatments included:no fertilization(CK),application of chemical fertilizer(NPK),chemical fertilizer plus cow dung(NPKM),and chemical fertilizer plus total rice straw returning(NPKS).【Result】The content of total nitrogen in>2 mm aggregate was significantly increased by 12.7%-51.9%in fertilization treatments compared with that in CK(P<0.05).The cumulative contribution ratios of TN in>2 mm aggregate to total nitrogen in bulk soil under NPKM and NPKS treatments were 24.7 and 20.0 percentage points significantly higher than that under CK(P<0.05),respectively.The content of acid-hydrolyzable nitrogen(AHN)and non-hydrolyzable nitrogen(NHN)in>2 mm aggregate in fertilization treatments were increased by 10.1%-36.3%and 20.7%-100.5%compared with those under CK,respectively,and the cumulative contributions of the two components to total nitrogen in bulk soil were increased as well,especially for NPKM and NPKS treatments.In>2 mm aggregate,the content of acid-hydrolyzable ammonia nitrogen(AMMN)in fertilization treatments were significantly increased by 17.2%-40.4%compared with that in CK(P<0.05),and the largest increasement was found under NPKM treatment.The content of acid-hydrolyzable amino acid nitrogen(AAN)and acid-hydrolyzable unknown nitrogen(HUN)were increased most significantly under NPKS and NPKM treatments,which were 24.0%and 52.1%higher than those under CK(P<0.05),respectively.The content of NHN and AMMN in>2 mm and 0.25-2 mm aggregates were all significantly positively correlated with the content of alkaline nitrogen in corresponding aggregates(P<0.05).Compared with NPKM,NPKS was more conducive to the accumulation of NHN in>2 mm aggregate.In>2 mm aggregate,NPKM had the biggest contribution to the increase of AMMN and HUN contents,and their cumulative contribution ratios to total nitrogen in bulk soil,while NPKS had the largest contribution to the increase of AAN content and their cumulative contribution ratio to total nitrogen in bulk soil.Redundant analysis(RDA)showed that the nitrogen uptake of rice plant was mainly affected by NHN components in>2 mm and 0.25-2 mm aggregates.The nitrogen uptake of rice plant was more affected by soil organic nitrogen components under NPKM and NPKS treatments than that under NPK and CK treatment.【Conclusion】The content of total nitrogen in>2 mm aggregate and their cumulative contributions to total nitrogen in bulk soil were increased in plough layer of yellow-mud paddy soil under long-term fertilizations,especially for the combined application of organic and inorganic fertilizers.The contents of NHN,AHN and AMMN in>2 mm aggregate were closely related to alkaline nitrogen and the nitrogen uptake of rice plant in yellow-mud paddy soil,which were important available nitrogen pool.
作者
王飞
李清华
何春梅
游燕玲
黄毅斌
WANG Fei;LI QingHua;HE ChunMei;YOU YanLing;HUANG YiBin(Institute of Soil and Fertilizer,Fujian Academy of Agricultural Sciences,Fuzhou 350013)
出处
《中国农业科学》
CAS
CSCD
北大核心
2023年第9期1718-1728,共11页
Scientia Agricultura Sinica
基金
福建省自然科学基金(2021J01479)
闽侯农田生态系统福建省野外科学观测研究站(闽科基[2018]17号)
“5511”协同创新工程(XTCXGC2021009)。
关键词
长期施肥
有机氮组分
土壤团聚体
黄泥田
化肥
有机肥
long-term fertilization
organic nitrogen component
soil aggregate
yellow-mud paddy soil
chemical fertilizer
organic fertilizer