期刊文献+

基于拓扑地图的移动机器人室内环境高效自主探索算法 被引量:3

An Efficient Autonomous Exploration Algorithm of Indoor Environment for Mobile Robots Using Topological Map
原文传递
导出
摘要 为了减少移动机器人在自主探索过程中反复到达已知区域的次数,从而提高自主探索效率,提出一种高效率自主探索算法TMRRT(topological map based rapidly exploring random tree)。首先,将变生长率的局部与全局快速扩展随机树(RRT)作为探测器来发现地图的边界,并对前沿点进行聚类;同时,将最佳探测点存储下来作为拓扑地图,避免机器人反复到达已探索区域。最后,在不同环境下进行仿真并在实际环境中进行验证。实验结果显示,本文的探索算法相对于RRT算法平均探索时长减小了7.5%以上、平均路径长度减小了19.8%以上,相对于FA(frontier-based approach)自主探索算法平均探索时长减小了15.7%以上、平均路径长度减小了34.3%以上。结果表明,该算法可以有效提高机器人自主探索的效率,在实际环境中具有可行性。 An efficient autonomous exploration algorithm TMRRT(topological map based rapidly exploring random tree)is proposed to reduce the times of reaching a known area repeatedly by the mobile robot in the process of autonomous exploration,and thus to improve the efficiency of autonomous exploration.Firstly,the local and global RRTs(rapidly exploring random trees)with variable growth rate are used as the detector to find the map boundary,and cluster the frontier points.Meanwhile,the best detection points are stored as a topological map to avoid reaching the explored area repeatedly by the robot.Finally,the simulations are carried out in different environments and the experiments are carried out in an actual environment.The experimental results show that the average exploration time can be reduced by more than 7.5%and the average path length can be reduced by more than 19.8%by the the proposed exploration algorithm compared with RRT autonomous exploration algorithm,and the average exploration time can be reduced by more than 15.7%and the average path length can be reduced by more than 34.3%compared with FA(frontier-based approach)autonomous exploration algorithm.The results show that the algorithm can effectively improve the efficiency of robot autonomous exploration and is feasible in the actual environment.
作者 齐立哲 何东东 陈骞 孙云权 QI Lizhe;HE Dongdong;CHEN Qian;SUN Yunquan(Academy for Engineering&Technology,Fudan University,Shanghai 200433,China)
出处 《机器人》 EI CSCD 北大核心 2023年第3期313-320,332,共9页 Robot
基金 上海市市级科技重大专项(2021SHZDZX0103)。
关键词 移动机器人 自主探索 RRT 路径规划 拓扑地图 mobile robot autonomous exploration RRT(rapidly exploring random tree)path planning topological map
  • 相关文献

参考文献10

二级参考文献65

  • 1刘磊,向平,王永骥,俞辉.非完整约束下的轮式移动机器人轨迹跟踪[J].清华大学学报(自然科学版),2007,47(z2):1884-1889. 被引量:20
  • 2刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:74
  • 3张恒,樊晓平.移动机器人同步定位与地图构建过程中的轨迹规划研究[J].机器人,2006,28(3):285-290. 被引量:13
  • 4Arkin R C. Behavior-based robotics[M]. 1st ed. Cambridge, USA: MIT Press, 1998: 1-3.
  • 5Lozano-Perez T. Spatial planning: A configuration space approach[J]. IEEE Transactions on Computers, 1983, 32(2): 108- 120.
  • 6LaValle S M. Rapidly-exploring random trees: A new tool for path planning[R]. Iowa, USA: Computer Science Department, Iowa State University, 1998.
  • 7LaValle S M, Kuffner J J. Randomized kinodynamic planning[J]. International Journal of Robotics Research, 2001, 20(5): 378-400.
  • 8Kuffner J J, LaValle S M. RRT-connect: An efficient approach to single-query path planning[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2000: 995-1001.
  • 9Rodriguez S, Tang X Y, Lien J M. An obstacle-based rapidlyexploring random tree[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2006: 895-900.
  • 10Szadeczky-Kardoss E, Kiss B. Extension of the rapidly exploring random tree algorithm with key configurations for nonholonomic motion planning[C]//IEEE International Conference on Mechatronics. Piscataway, NJ, USA: IEEE, 2006: 363-368.

共引文献218

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部