期刊文献+

基于多传感器信息融合的外骨骼运动意图辨识 被引量:3

Exoskeleton Motion Intention Recognition Based on Multi-sensor Information Fusion
原文传递
导出
摘要 为了实现外骨骼机器人的柔顺运动控制,需要对穿戴者的运动意图进行实时准确地辨识与预测。本研究利用多传感器信息融合的方法完成对穿戴者运动意图的识别。通过对多种机器学习算法在识别准确性、资源消耗和处理实时性进行比较、最终确定利用支持向量机(SVM)实现对日常8个运动模式(静坐、双腿站立、步行、跑步、上下斜坡和上下楼梯)完成动作模式的识别,识别平均准确率达到95%。对于运动相位和运动切换事件的预测,利用神经-模糊推理理论完成运动相位识别与状态切换事件的预测。在给定的测试集上相位识别准确率为99%,且预测的状态切换时刻与真实时间的偏移绝对值的均值为61.6 ms,满足外骨骼柔顺控制对预测时间的要求。 Accurate identification and prediction of a wearer's motion intention in real time are necessary to realize the compliant motion control of exoskeleton robots.Thus,we use the multi-sensor information fusion method to recognize the wearer's motion intention.The comparison of various machine learning algorithms with respect to recognition accuracy,resource consumption,and real-time processing revealed that support vector machine can recognize eight daily motion patterns(sitting,standing,walking,running,ramp ascent,ramp descent,stairs ascent and stairs descent),at an average recognition accuracy rate of 95%.The neuro-fuzzy inference theory is adopted to predict motion phase and motion switching events.On the given test set,the phase recognition accuracy rate is 99%,and the average absolute value of the deviation between the predicted and real-time state switching moments is 61.5 ms.This observation meets the requirements of exoskeleton compliance control for predicting time.
作者 石磊 尹鹏 杨铭 屈盛官 SHI Lei;YIN Peng;YANG Ming;QU Shengguan(Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510000,China;Guangzhou Shiyuan Electronic Technology Company Limited,Guangzhou 510300,China)
出处 《信息与控制》 CSCD 北大核心 2023年第2期142-153,共12页 Information and Control
关键词 下肢增强型外骨骼机器人 多传感器信息融合算法 机器学习 意图识别 神经-模糊推理系统 lower limb augmented exoskeleton robot multi-sensor information fusion algorithm machine learning intention recognition neuro-fuzzy inference system
  • 相关文献

参考文献5

二级参考文献22

  • 1杨鹏,刘作军,耿艳利,赵丽娜.智能下肢假肢关键技术研究进展[J].河北工业大学学报,2013,42(1):76-80. 被引量:33
  • 2吴宝元,余永,许德章,吴仲城,陈峰.可穿戴式下肢助力机器人运动学分析与仿真[J].机械科学与技术,2007,26(2):235-240. 被引量:19
  • 3Chen F, Yu Y, Ge Y J. Dynamic model and motion control analysis of the power assist intelligence leg [C]// Proceeding of the 6th World Congress on Intelligent Control and Automation. Dalian, China: IEEE Press, 2006, 2:6 436-6 440.
  • 4Chen F, Yu Y, Ge Y J, et al. A PAWL for enhancing strength and endurance during walking using interaction force and dynamical information[C]//IEEE Conference on Robotics and Biomimetics. INSPEC, 2006:654-659.
  • 5Mosher R S. Force reflecting electrohydraulic servomanipulator[J].Electro-Technology, 1960, 71: 138-141.
  • 6Kazerooni H, Racine J L, Huang L H, et al. On the control of the Berkeley lower extremity exoskeleton (BLEEX)[C]// Proceeding of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE Press, 2005:4 353-4 360.
  • 7Chu A, Kazerooni H, Zoss A. On the biomimetie design of the Berkeley lower extremity exoskeleton (BLEEX)[C]// Proceeding of the IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE Press, 2005:4 345-4 352.
  • 8Kawamoto H, Kanbe S, Sankai Y. Power assist method for HAL-3 estimating operator's intention based on motion information [C]// Proceedings of IEEE International workshop on Robot and Human Interactive Communication. California: IEEE Press, 2003: 67-72.
  • 9Kim S H, Sankai Y. Stair climbing task of humanoid robot by phase composition and phase sequence[C]// Proceedings of IEEE International Workshop on Robot and Human Interactive Communication. Barcelona, Spain: IEEE Press, 2005:531-536.
  • 10Kiguchi K, Kariya S, Watanabe K, et al. An exoskeletal robot for human elbow motion supportsensor fusion, adaptation, and control [J].IEEE Transactions On Systems, Man, And cybernetics, Partb, 2001, 31(3): 353-361.

共引文献49

同被引文献27

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部