期刊文献+

基于四阶贝塞尔曲线和改进狮群优化算法求解路径规划问题 被引量:9

Solving Path Planning Problem Based on Fourth-order Bezier Curve and Improved Lion Swarm Optimization Algorithm
原文传递
导出
摘要 首先,针对基础狮群算法中存在搜索效率低、多样性不足等问题,提出使用Sin混沌种群初始化操作提高算法初始解的质量,并引入调节因子,提高算法的多样性。其次,针对路径规划的问题,引入方向约束性函数,增加算法的搜索精度和收敛速度,同时提出双种群的狮群结构,通过差异化种群的相互协作提高算法的搜索能力,并运用四阶贝塞尔曲线,进行路径平滑处理。最后,经测试实验仿真,论证了改进狮群算法,相比基础狮群算法、灰狼算法、粒子群算法和遗传算法,在性能上有着显著提高。路径规划实验中,改进狮群算法规划出的路径较对比算法平均减少了5.67%,相比改进前的算法,运行时间减少了8.82%。 The basic lion swarm algorithm is associated with low search efficiency and insufficient diversity.Thus,in this study,we propose a Sin chaotic population initialization operation to improve the quality of the initial solution of the algorithm.We also introduce an adjustment factor to improve the diversity of the algorithm.The directional constraint function increases the search accuracy and convergence rate of the algorithm,resolving the issue of path planning.We also propose the lion structure of two populations and improve the search ability of the algorithm through the mutual cooperation of differentiated populations.Path smoothing is achieved using the fourth-order Bessel curve.Finally,the improved lion swarm algorithm is demonstrated using test simulation.The performance of the proposed algorithm is significantly improved compared with basic lion swarm optimization,gray wolf optimization,particle swarm optimization,and genetic algorithms.Our findings show that the path planned by the improved lion swarm optimization is reduced by 5.67%on average,and the running time is reduced by 8.82%compared with the other studied algorithms.
作者 黄志锋 刘媛华 HUANG Zhifeng;LIU Yuanhua(Business School,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《信息与控制》 CSCD 北大核心 2023年第2期176-189,共14页 Information and Control
基金 国家自然科学基金(72071130)。
关键词 狮群优化算法 路径规划 四阶贝塞尔曲线 双种群 调节因子 lion swarm optimization(LSO)algorithm path planning fourth-order Bezier curve dual populations adjustment factor
  • 相关文献

参考文献17

二级参考文献116

共引文献623

同被引文献87

引证文献9

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部