摘要
常规的漏洞检测方法通过激活函数的方式,标识出存在漏洞的代码,少有对代码中的词义进行分析,导致检测效果不佳。因此,设计了基于图神经网络的软件源码漏洞检测方法。提取软件源码漏洞特征,针对漏洞特征进行词义分析。利用图神经网络构建软件源码漏洞检测模型,对源码漏洞做二次检测,去掉重读的源码,得到正确的代码。采用对比实验,验证了该方法的检测效果更佳。
The conventional methods of vulnerability detection identify the code with vulnerability by means of activation function,and seldom analyze the meaning of the words in the code,which results in poor detection results.Therefore,a software source code vulnerability detection method based on graph neural network is designed.The software source code vulnerability features are extracted and their word meaning is analyzed.The software source code vulnerability detection model is constructed using graph neural network,and the source code vulnerability is detected twice to remove the reread source code and get the correct code.Comparison experiments are used to verify that the method has better detection results.
作者
王苏苏
徐阳
Wang Susu;Xu Yang(Jiangsu Shipping College,Nantong,Jiangsu 226009,China)
出处
《计算机时代》
2023年第6期29-32,共4页
Computer Era
基金
南通市科技计划项目“软件代码推荐关键技术的研究”(JC2021125)。
关键词
图神经网络
源码
漏洞
检测方法
graph neural network
source code
vulnerability
detection method