摘要
基于中医脏腑辩证的28种常见临床证候分类,探讨了多标签K近邻、全连接神经网络、一维卷积神经网络3种算法原理,测试、分析、比较了3种算法的优劣.其中,全连接神经网络模型的分类算法具有较高的准确率,可达84.48%.
28 common clinical syndromes is classified based on the dialectics of TCM viscera, explores three algorithm principles of multi-label K-nearest neighbor, fully connected neural network, and one-dimensional convolutional neural network with testing, analyzing and comparing the advantages and disadvantages of the three algorithms. Among these algorithms, the classification algorithm of the fully connected neural network model has a high accuracy rate of up to 84.48%. The use of neural network model algorithm not only improves the accuracy of TCM diagnosis, but also more comprehensively diagnosed diseases, and has a good application prospect in TCM clinical diagnosis.
作者
杜昉臻
何圆姣
冯西贝
刘国华
Du Fangzhen;He Yuanjiao;Feng Xibei;Liu Guohua(Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology,College of Electronic Information Technology and Optical Engineering,Nankai University,Tianjin 300350,China)
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2023年第2期12-16,共5页
Acta Scientiarum Naturalium Universitatis Nankaiensis
基金
中央高校基本科研业务费专项资金。
关键词
中医脏腑辨证
人工智能
神经网络
中医证候分类
TCM syndrome differentiation of zang-fu
arificial intelligence
neural network
TCM syndrome classification