期刊文献+

基于人工智能的中医证候分类算法研究 被引量:2

Research on TCM Syndrome Classification Algorithm Based on Artificial Intelligence
原文传递
导出
摘要 基于中医脏腑辩证的28种常见临床证候分类,探讨了多标签K近邻、全连接神经网络、一维卷积神经网络3种算法原理,测试、分析、比较了3种算法的优劣.其中,全连接神经网络模型的分类算法具有较高的准确率,可达84.48%. 28 common clinical syndromes is classified based on the dialectics of TCM viscera, explores three algorithm principles of multi-label K-nearest neighbor, fully connected neural network, and one-dimensional convolutional neural network with testing, analyzing and comparing the advantages and disadvantages of the three algorithms. Among these algorithms, the classification algorithm of the fully connected neural network model has a high accuracy rate of up to 84.48%. The use of neural network model algorithm not only improves the accuracy of TCM diagnosis, but also more comprehensively diagnosed diseases, and has a good application prospect in TCM clinical diagnosis.
作者 杜昉臻 何圆姣 冯西贝 刘国华 Du Fangzhen;He Yuanjiao;Feng Xibei;Liu Guohua(Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology,College of Electronic Information Technology and Optical Engineering,Nankai University,Tianjin 300350,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期12-16,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 中央高校基本科研业务费专项资金。
关键词 中医脏腑辨证 人工智能 神经网络 中医证候分类 TCM syndrome differentiation of zang-fu arificial intelligence neural network TCM syndrome classification
  • 相关文献

参考文献13

二级参考文献152

共引文献198

同被引文献115

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部