期刊文献+

异侧多级旋流冷却结构对横流抑制及强化传热的影响

Effects of the Different-Side Multi-Stage Swirling Cooling Configuration onCrossFlow Suppression and Heat Transfer Enhancement
下载PDF
导出
摘要 为进一步强化前缘旋流冷却,解决目前燃气透平叶片前缘多级旋流冷却结构相邻级之间流动折转带来的高压力损失问题,并提高叶片前缘传热均匀度,在已有研究基础上提出了一种新型的异侧多级旋流冷却结构。建立了原始同侧多级旋流冷却结构和新型异侧多级旋流冷却结构的模型,采用三维定常数值模拟分析方法,在保持靶面温度不变的条件下,对比分析了多个进口雷诺数条件下不同旋流冷却结构的流动与传热特性。仿真结果表明:冷却气体通过切向喷嘴射入旋流腔内部形成高速旋流,显著提高强化传热能力;对于单级旋流冷却,冷气的周向速度逐渐减小,轴向速度增大,横流逐渐形成,横流对下游射流产生冲击作用,削弱下游换热;多级旋流冷却结构对于旋流腔内部横流可起到横流抑制作用,周向平均努塞尔数有明显提高,但原始同侧多级旋流冷却结构相邻级之间的流动折转带来了很高的压力损失;异侧多级冷却结构在原有模型优点的基础上减少了22%的压力损失,改善了冷却气体分配的均匀度,实现了旋流冷却整体传热性能的进一步提升。 Based on previous studies,this paper proposes a novel multi-stage swirl cooling structure with different-side nozzles to further enhance the leading-edge swirl cooling and heat transfer uniformity of gas turbine blades,and tackle high pressure loss caused by flow deflection between adjacent stages of the multi-stage swirl cooling structure at the leading edge.The models of the original multi-stage swirl cooling structure on the same side and the new multi-stage swirl cooling structure on the different side are established;the flow and heat transfer characteristics of these two swirl cooling structures at multiple inlet Reynolds numbers are analyzed and compared with the three-dimensional steady numerical simulation method under constant target surface temperature.The calculation results show that the coolant is injected into the swirl chamber through tangential nozzles to form high-speed swirl flow,which significantly improves the heat transfer capacity.For single-stage swirl cooling,the circumferential velocity of coolant gradually decreases while the axial velocity increases,leading to the gradual formation of a cross flow.The cross flow impacts the downstream jet flow and weakens the downstream heat transfer.The multi-stage swirl cooling structure can inhibit the cross flow,and the average circumferential Nusselt number is increased obviously.However,the flow deflection between the adjacent stages of the original multi-stage swirl cooling structure on the same side brings high pressure loss.With the advantages of the original model,the multi-stage cooling structure on the different side reduces the pressure loss by 22%,improves the uniformity of coolant distribution,and further enhances the overall heat transfer performance of the swirl cooling structure.
作者 肖坤 董光辰 丰镇平 XIAO Kun;DONG Guangchen;FENG Zhenping(School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China;Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2023年第5期24-33,共10页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51876156)。
关键词 叶片前缘 多级旋流冷却 强化传热 横流抑制 blade leading-edge multistage swirl cooling heat transfer enhancement cross flow suppression
  • 相关文献

参考文献4

二级参考文献40

  • 1Kazuyoshi MATSUZAKI,Hideaki USHIJIMA,Mizue MUNEKATA,Hideki OHBA.Numerical Study on Particle Motions in Swirling Flows in a Cyclone Separator[J].Journal of Thermal Science,2006,15(2):181-185. 被引量:3
  • 2LIAO Gaoliang, WANG Xinjun, LI Jun, et al. A nu- merical comparison of thermal performance of in-line pin-fins in a wedge duct with three kinds of coolant [J]. International Journal of Heat and Mass Transfer, 2014, 77: 1033-1042.
  • 3HAY N, WEST P D. Heat transfer in free swirling flow in a pipe [J]. Journal of Heat Transfer, 1975, 97 (3) .. 411-416.
  • 4GLEZER B, MOON H K, O'CONNELL T. A novel technique for the internal blade cooling [C]//Proceed- ings of the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. New York, USA: ASME, 2013: V004T09A015.
  • 5HEDLUND C R, LIGRANI P M, GLEZER B, et al. Heat transfer in a swirl chamber at different tempera- ture ratios and Reynolds numbers [J]. International Journal of Heat and Mass Transfer, 1999, 42 (22) : 4081-4091.
  • 6LING J P C W, IRELAND P T, HARVEY N W. Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling pas- sage with tangential iniection [C] // Proceedings of the ASME 2006 Turbine Technical Conference on Power for Land, Sea, and Air. New York, USA: ASME, 2006 : 325-340.
  • 7PIRALISHVILI S A, VERETENNIKOV S V, KHASANOV S M, et al. Development of a cyclone- vortex nozzle vane and design efficiency of its convec- tive-film cooling by steam [J]. Thermal Engineering, 2010, 57(5): 433-440.
  • 8LIU Zhao, LI Jun, FENG Zhenping. Numerical study on the effect of jet slot height on flow and heat transfer of swirl cooling in leading edge model for gas turbine blade [C] // Proceedings of the ASME 2013 Turbine Technical Conference and Exposition on Power for Land, Sea, and Air. New York, USA.. ASME, 2013= V03AT12A029.
  • 9XU Liang, WANG Wei, GAO Tieyu, et al. Experi- mental study on cooling performance o a steam-cooled turbine blade with five internal cooling smooth chan- nels [J]. Experimental Thermal and Fluid Science, 2014, 58.. 180-187.
  • 10SHUI Linqi, GAO Jianmin, XU Liang, et al. Numeri cal investigation of heat transfer and flow characteris- tics in a steam-cooled square ribbed duct [C]//Pro- ceeding of the 2010 ASME Turbine Technical Confer- ence and Exposition on Power for Land, Sea, and Air. New York, USA: ASME, 2010 163-171.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部