期刊文献+

特征属性描述下设备的新故障零样本识别

New fault zero sample identification of equipment based on feature attribute description
下载PDF
导出
摘要 自动化升级背景下,设备间耦合性不断提高,故障表现形式繁杂多样.单一故障不及时处理极易造成影响范围的扩大,使得事故进一步升级.为保证设备的正常运转,对传统的基于案例分析生成的故障诊断方法提出了新的要求,具体包括:低成本、长期监测、少样本或零样本故障识别.针对这些新需求,本文提出将图像处理领域中使用的零样本分类识别思想引入故障诊断领域.通过研究现有故障样本的特征参量,对其进行寻优确定用于状态监测的特征,采用模糊神经网络构成特征属性描述器,将特征描述为设备属性,再由ART网络以属性描述为基础,对设备进行长期监测的同时增量学习.即以少量设备样本或相似样本的分析为基础构建监测与学习机制,识别原有故障的同时学习并记录新类故障.为说明本方法的可行性与有效性,文章利用电机故障数据集以少量样本为先验知识构建系统,混合未知故障样本进行系统测试.实验结果表明,零样本分类思想的应用有望解决当前技术背景下设备故障诊断的新挑战. Under the background of automation upgrading,the coupling between equipments is constantly improving,and the fault manifestations are complex and diverse.Failure to deal with a single fault in a timely manner is likely to expand the scope of influence,which further escalates the accident.In order to ensure the normal operation of the equipment,new requirements are put forward for the traditional fault diagnosis methods based on case analysis,including low cost,long-term monitoring,small sample or zero sample fault identification.To meet these new requirements,this paper proposes to introduce the zero sample classification recognition idea used in the image processing field into the fault diagnosis field.By studying the characteristic parameters of the existing fault samples,the characteristics used for condition monitoring are determined through optimization.The fuzzy neural network is used to form a feature attribute descriptor,which describes the characteristics as equipment attributes.Based on the attribute description,the ART network conducts incremental learning for long-term monitoring of equipment at the same time.That is to build a monitoring and learning mechanism based on the analysis of a small number of equipment samples or similar samples,identify the original faults and learn and record new faults at the same time.In order to illustrate the feasibility and effectiveness of this method,this paper uses a small number of motor fault data sets as prior knowledge to build a system,and mixed unknown fault samples for system testing.The experimental results show that the application of zero sample classification is expected to solve the new challenges of equipment fault diagnosis under the current technical background.
作者 申海锋 石颉 李莎莎 柴梓嘉 SHEN Haifeng;SHI Jie;LI Shasha;CHAI Zijia(School of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou 215009,Jiangsu,China)
出处 《微电子学与计算机》 2023年第6期77-84,共8页 Microelectronics & Computer
基金 江苏省研究生科研与实践创新计划项目(SJCX22_1581)。
关键词 特征属性 新故障 零样本 故障诊断 增量学习 Characteristic attribute New fault Zero sample Fault diagnosis Incremental learning.
  • 相关文献

参考文献9

二级参考文献93

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部