摘要
太阳能热催化还原技术是二氧化碳资源化的重要技术路线,不同催化剂可实现CO_(2)向CO、CH_(4)、HCOOH、MeOH和合成气的转化。转化过程中光激发热电子及处于一定热环境中的热力系统的状态同时受到光热转化效率、材料选择性以及系统结构和工作参数的影响,直接决定了系统的转化效率。本文分析了热驱动二氧化碳催化转化相关的科学技术问题、挑战和需求,系统总结了二氧化碳热化学转化过程的反应热力学和动力学机制,以及新型反应器研发方面的重大进展。指出了考虑入射能量光谱特性与光热催化剂匹配能够实现低能量输入条件下的高转化率和高选择性,通过二氧化碳加氢生产C_(1+)和C_(2+)燃料能够有效扩大太阳能光热耦合利用规模并使之与化学工业接轨,具有重要的研究价值和广阔的应用前景。
Solar thermal catalytic reduction technology is an important and emerging technical route for carbon dioxide utilization,and different catalysts can realize the conversion of CO_(2)to CO,CH_(4),HCOOH,MeOH and synthetic gas.During the conversion process,the condition of light-induced hot-electron,as well as the heating system in a certain thermal environment is also affected by photo-thermal conversion efficiency,material selectivity,and system structure and working parameters,which directly determines the overall conversion efficiency.This article analyzes the scientific and technological issues,challenges,and needs relating to thermal-driven CO_(2)catalytic conversion.The reaction thermodynamics and dynamic mechanisms of CO_(2)thermochemical conversion,as well as major progress in the development of new reactors and materials,are systematically summarized.It is pointed out that considering the matching energy spectrum characteristics and light combining thermal catalysts could achieve a high conversion rate and high selectivity under low energy input conditions.CO_(2)hydrogenation to C_(1+)and C_(2+)fuels production can effectively expand the scale of solar photo-thermal coupling utilization,and making it in line with the chemical industry has important research values and broad application prospects.
作者
帅永
马丹妮
颜天天
张烁
GUENE LOUGOU Bachirou
张昊
王伟
SHUAI Yong;MA Danni;YAN Tiantian;ZHANG Shuo;GUENE LOUGOU Bachirou;ZHANG Hao;WANG Wei(School of Energy Science and Engineering,Harbin Institute of Technology,Harbin 150001,China;School of Electrical Engineering and Automation,Harbin Institute of Technology,Harbin 150001,China)
出处
《能源环境保护》
2023年第3期13-24,共12页
Energy Environmental Protection
基金
国家重点研发项目基金资助项目(2018YFA0702300)
国家自然科学基金资助项目(52227813)。