期刊文献+

基于最小体积约束的频域卷积盲源分离 被引量:1

Frequency-domain Convolutive Blind Source Separation with Minimum Volume Constraint
下载PDF
导出
摘要 频域盲源分离算法多数基于窄带假设,该假设在长混响环境下不成立。基于卷积传递函数(Convolutive Transfer Function,CTF)的多通道非负矩阵分解(Multichannel Nonnegative Matrix Factorization,MNMF)方法不依赖窄带假设,在长混响环境下的分离性能较其他传统算法有显著提升。但是,非负矩阵分解(NMF)对源信号功率谱进行近似估计在大多数情况下是病态的,其最优解不唯一。本文提出了一种基于最小体积约束的频域卷积盲源分离方法,在多通道非负矩阵分解(CTF-MNMF)的目标函数中,引入NMF基矩阵的最小体积约束来提高问题的适定性和求解参数的可辨识性。采用Majorization-Minimization(MM)优化方法对最小体积约束的目标函数进行求解,导出了估计参数的闭式解。仿真实验表明,在长混响环境下,所提方法比CTF-MNMF具有更好的分离性能。 Most frequency-domain blind source separation algorithms are based on the narrow-band assumption,which is no longer applicable in the long reverberation environment.The convolutive transfer function-based multichannel nonnegative matrix factorization(CTF-MNMF)does not rely on the narrow-band assumption,and the separation performance in the long reverberation environment is significantly improved compared with other traditional methods.However,the nonnegative matrix factorization(NMF)approximates the power spectrum of source signal,which is ill-posed in most cases,and the optimal solution is non-unique.In this paper,a frequency-domain blind source separation method with minimum volume constraint is proposed.Minimum volume constraint of the NMF basis matrix is added into the objective function of CTF-MNMF,aiming at improve the fitness of the problem and the discriminability of the estimated parameters.Majorization-Minimization(MM)optimization method is used to solve the objective function with the minimum volume constraint,and the closed-form solution of the estimated parameters is derived.Simulation experiments show that the separation performance of the method is significantly improved compared with the CTF-MNMF method in a long reverberation environment.
作者 刘升东 杨飞然 杨军 LIU Shengdong;YANG Feiran;YANG Jun(Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《信号处理》 CSCD 北大核心 2023年第5期829-836,共8页 Journal of Signal Processing
基金 国家自然科学基金(62171438,11804368) 中国科学院青年创新促进会基金(2018027) 中国科学院声学研究所自由探索项目(QYTS20211)。
关键词 非负矩阵分解 卷积传递函数 最小体积约束 盲源分离 nonnegative matrix factorization convolutive transfer function minimum volume constraint blind source separation
  • 相关文献

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部