期刊文献+

集成MCFC和ISCC以及双效溴化锂制冷的新型CCHP系统性能分析

Performance Analysis of a New CCHP System Integrating MCFC,ISCC,and Dual Effect Lithium Bromide Refrigeration
下载PDF
导出
摘要 本文创新性提出一个新型冷、热、电联供系统,该系统由熔融碳酸盐燃料电池、太阳能热互补的燃气蒸汽联合循环系统以及双效吸收式溴化锂制冷机组成。将塔式太阳能集热器与燃气蒸汽联合循环中的压气机进行集成,利用太阳能加热压气机进入燃烧室的空气,提高燃烧室温度,减少进入燃烧室的天然气流量,从而节省燃料。利用燃料电池尾气进行补燃,提高燃气蒸汽联合循环中余热锅炉的烟气温度,从而提高系统做功能力,减少热量损失。本文利用Aspen Plus软件搭建仿真模型,基于热力学定律对系统进行性能分析,通过计算得出本系统[火用]效率为63.01%,系统热效率为62.36%,CO_(2)排放率为408.53 g/kWh。系统可以向用户侧提供488.46 MW的电能,48.87 MW的热能和7.5 MW的冷量。 In this paper,a new type of combined cooling,heating and power supply system is innovatively proposed,which is composed of molten carbonate fuel cells,solar energy heat complementary gas steam combined cycle system and double effect absorption lithium bromide refrigerator.The tower solar collector is integrated with the compressor in the gas steam combined cycle.The solar energy is used to heat the air entering the combustion chamber of the compressor,increase the temperature of the combustion chamber,reduce the flow of natural gas entering the combustion chamber,and save fuel.The fuel cell tail gas is used for supplementary combustion to increase the flue gas temperature of the waste heat boiler in the gas steam combined cycle,so as to improve the system work capacity and reduce heat loss.In this paper,Aspen Plus software is used to build a simulation model,and the system performance is analyzed based on the thermodynamic law.Through calculation,the system's efficiency is 63.01%,the system's thermal efficiency is 62.36%,and the CO2 emission rate is 408.53 g/kWh.The system can provide 488.46 MW of electric energy,48.87MW of thermal energy and 7.5 MW of cooling capacity to the user side.
作者 吕彩霞 刘海峰 Lv Caixia;Liu Haifeng(State Power Investment Group Co.,Ltd.,Beijing 100029)
出处 《山西化工》 CAS 2023年第5期68-72,76,共6页 Shanxi Chemical Industry
关键词 熔融碳酸盐燃料电池 余热回收 热力性能分析 系统耦合 molten carbonate fuel cell waste heat recovery thermal performance analysis system coupling
  • 相关文献

参考文献2

二级参考文献12

  • 1Fisher U, Sugarmen C, Ring A, et al. Gas Turbine "Solarization" -Modifications for Solar/Fuel Hybrid Op- eration [J]. Solar Energy Engineering, 2004, 126:872 878.
  • 2Cable R. Solar Trough Generation-the California Experi- ence, KJC Operating Company [R]. Washington DC, So- lar Forum, 2001.
  • 3U.S. Department of Energy. Concentrating Solar Power Commercial Application Study: Reducing Water Con- sumption of Concentrating Solar Power Electricity Gen- eration [R]. Washington DC, Report to Congress, 2009.
  • 4Dersch J, Geyer M, Herrmann U, et al. Trough Integra- tion Into Power Plants-a Study on the Performance and Economy of Integrated Solar Combined Cycle Systems [J]. Energy, 2004, 29:947-959.
  • 5Kribus A, Zaibel R, Carey D, et al. A Solar-Driven Com- bined Cycle Power Plant [J]. Solar Energy, 1998, 62:121 129.
  • 6Heller P, Pfander M, Denk T, et al. Test and Evaluation of a Solar Powered Gas Turbine System [J]. Solar Energy, 2005, 80:1225 1230.
  • 7EPRI. Technology Assessments of Advanced Power Gen- eration Systems II-Kalina Bottoming Cycle [R]. Palo Alto, USA: Electric Power Research Institute, 2006.
  • 8Yuanyuan Li,Yongping Yang.Thermodynamic analysis of a novel integrated solar combined cycle[J].Applied Energy.2014
  • 9Hicham Abdallah,Simon Harvey.Thermodynamic analysis of chemically recuperated gas turbines[J].International Journal of Thermal Sciences.2001(4)
  • 10陈超,聂志刚,那小桃.槽式太阳能集热发电系统发展状况[J].工程研究(跨学科视野中的工程),2009,1(4):314-318. 被引量:10

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部