期刊文献+

纳米孔洞发射位错的愈合机理研究

Study of Healing Mechanism of Nano-hole with Emission Dislocations
下载PDF
导出
摘要 孔洞影响材料的使用寿命,因此孔洞愈合的机理研究有重要意义。本研究采用晶体相场(Phase Field Crystal,PFC)模型,研究纳米孔洞缺陷在单轴压应变作用下的微观愈合过程中位错发射的特征。结果表明,在压应变作用下,体系能量累积到某一临界值时,孔洞发生变形并长出凸口,在凸口处位错开始萌生。随着压应变的增加,凸口处位错开始发射,使得孔洞不断缩小,最终通过该方式实现孔洞愈合。上述结果表明,位错发射机制是纳米孔洞愈合的主要形式,对防止材料裂纹的扩展以及提高材料的寿命具有重要的理论意义。 Holes affect the service life of materials,so it is of great significance to study the mechanism of hole healing.In this study,Phase Field Crystal(PFC)model was used to study the characteristics of dislocation e-mission during the micro-healing process of nano-hole defects under uniaxial compressive strain.The results show that under the compressive strain,when the system energy accumulates to a certain critical value,the holes deform and grow out of the convex,and the dislocations begin to initiate at the convex.With the in-crease of compressive strain,dislocations begin to emit at the convex,which makes the hole shrink continu-ously,and finally the hole healing is realized in this way.The above results show that the dislocation emission mechanism is the main form of nano-hole healing,which is of great theoretical significance to prevent the propagation of cracks and improve the life of materials.
作者 易小爱 李依轩 黄宗吉 廖坤 邓芊芊 高英俊 YI Xiao′ai;LI Yixuan;HUANG Zongji;LIAO Kun;DENG Qianqian;GAO Yingjun(School of Physical Science and Technology,Guangxi University,Nanning,Guangxi,530004,China)
出处 《广西科学》 CAS 北大核心 2023年第2期340-346,共7页 Guangxi Sciences
基金 国家自然科学基金项目(51861003,51561031) 广西自然科学基金重点项目(2020GXNSFDA053001)资助。
关键词 PFC模型 应变 位错发射 孔洞愈合 纳米孔洞 PFC model strain dislocation emission hole healing nano-hole
  • 相关文献

参考文献5

二级参考文献32

  • 1张林,王绍青,叶恒强.大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究[J].物理学报,2004,53(8):2497-2502. 被引量:19
  • 2Alsayed A M, Islam M F, Zhang J, et al. Premelting at defects within bulk colloidal crystals[J]. Science, 2005, 309:1207-1210.
  • 3Keblinski P,Phillpot S R,Wolf D,et al. Amorphous str- ucture of grain boundaries and grain junctions in nano- crystalline silicon by molecular-dynamics simulation[J]. Acta Materialia, 1997,45 (3) : 987-998.
  • 4Besold G, Mouritsen O G. Grain-boundary melting: a monte carlo study[J]. Physical Review B, 1994,50(10) : 6573-6576.
  • 5Elder K R, Katakowski M, Haataja M, et al. Modeling e- lasticity in crystal growth[J]. Phys Rev Lett, 2002,88: 245701.
  • 6Elder K R,Grant M. Modeling elastic and plastic defor- mations in nonequilibriun processing using phase field crystals[J]. Physical Review E,2004,70(5) :051605.
  • 7Mellenthin J, Karma A, Plapp M. Phase-field crystal study of grain-boundary premelting[J]. Physical Re- view B,2008,78(18) : 184110.
  • 8Berry J, Elder K R, Grant M. Melting at dislocations and grain boundaries: a phase field crystal study[J].Physical Review B,2008,77(22) : 224114.
  • 9Adland A, Karma A , Spatschek R, et al. Phase-field- crystal study of grain boundary premelting and shear- ing in bcc iron[J]. Physical Review B, 2013,87(2): 024110.
  • 10杨涛,陈铮,董卫平.应力诱发双位错组亚晶界湮没的晶体相场模拟[J].金属学报,2011,47(10):1301-1306. 被引量:32

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部