期刊文献+

基于函数型主成分分析的稀疏纵向数据建模研究 被引量:1

Modeling Research to Sparse Longitudinal Data based on Functional Principal Component Analysis
下载PDF
导出
摘要 目的探索基于条件期望的函数型主成分分析方法(principal analysis by conditional expectation,PACE)在稀疏且不规则的纵向数据中的预测效果,评价其揭示总体变化趋势、个体特异的变异方式以及预测个体纵向变化轨迹的能力。方法采用R软件模拟生成样本量为200的三种不同稀疏情形的纵向数据集,通过数值模拟定量地评价PACE方法的降维及预测效果。结果根据累计方差贡献率达到85%,三种不同稀疏情形的纵向数据集最终选取的主成分个数分别为4、4、3,PACE方法在不同稀疏情形下预测结果均具有较小的均方误差(MSE),分别为0.1410、0.0670、0.0161,而且观测点个数越多预测效果越好。结论PACE方法可以实现在随访间隔不规则且数据稀疏的情况下,捕获纵向数据随时间变化的总体趋势,揭示个体特异的变异方式,预测个体的纵向轨迹。 Objective To explore the prediction effect of principal analysis by conditional expectation(PACE)in sparse and irregular longitudinal data,and evaluate its ability to reveal the overall change trend,individual specific variation pattern and predict individual longitudinal change trajectory.Methods The R software was used to simulate and generate longitudinal data sets of three different sparse cases with a sample size of 200,and the dimensionality reduction and prediction effects of the PACE method were quantitatively evaluated through numerical simulation.Results According to the cumulative variance contribution rate of 85%,the final number of principal components selected for the three longitudinal data sets with different sparse conditions were 4,4 and 3 respectively.The mean square error(MSE)of PACE method in different sparse conditions was 0.1410,0.0670 and 0.0161 respectively.And the more observation points,the better the prediction effect.Conclusion The PACE method can capture the overall trend of longitudinal data over time,reveal individual specific variation patterns,and predict individual longitudinal trajectories under the condition of irregular follow-up intervals and sparse data.
作者 张碧颖 苏海霞 林倩玮 杨喆 梁英 张玉海 Zhang Biying;Su Haixia;Lin Qianwei(Department of Health Statistics,Faculty of Preventive Medicine,Air Force Medical University(710032),Xi′an)
出处 《中国卫生统计》 CSCD 北大核心 2023年第2期162-166,共5页 Chinese Journal of Health Statistics
基金 国家自然科学基金项目(82073662)。
关键词 纵向数据 函数型数据 函数型主成分分析 稀疏数据 局部加权 Longitudinal data Functional data Functional principal component analysis Sparse data Locally weighted
  • 相关文献

参考文献6

二级参考文献44

共引文献37

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部