期刊文献+

针对大规模数据的分布一致缺失值插补算法 被引量:3

Distribution consistency-based missing value imputation algorithm for large-scale data sets
原文传递
导出
摘要 缺失值插补(missing value imputation,MVI)作为数据挖掘领域的重要研究分支,旨在为机器学习算法的训练提供高质量的数据支持。不同于现有的以算法性能提升为导向的MVI算法,为对大规模数据的缺失值进行有效插补,该文提出一种以数据结构还原为导向的数据分布一致MVI(distribution consistency-based MVI, DC-MVI)算法。首先,DC-MVI算法基于概率分布一致性原则构建了用于确定最优插补值的目标函数;其次,利用推导出的可行缺失值优化规则获取与原始完整值保持最大分布一致性且方差最为接近的插补值;最后,在分布式环境下,针对大数据的随机样本划分(random sample partition, RSP)数据块并行训练DC-MVI算法,获得大规模数据缺失值对应的插补值。实验结果表明:DC-MVI算法不仅能生成与原始完整值保持给定显著性水平下概率分布一致的插补值,还具有比另外5种经典的和3种最新的MVI算法更快的插补速度和更好的插补效果,进而证实DC-MVI算法是一种可行的大规模数据MVI算法。 [Objective]As a significant research branch in the field of data mining,missing value imputation(MVI)aims to provide high-quality data support for the training of machine learning algorithms.However,MVI results for large-scale data sets are not ideal in terms of restoring data distribution and improving data prognosis accuracy.To improve the performance of the existing MVI algorithms,we propose a distribution consistency-based MVI(DC-MVI)algorithm that attempts to restore the original data structure by imputing the missing values for large-scale data sets.[Methods]First,the DC-MVI algorithm developed an objective function to determine the optimal imputation values based on the principle of probability distribution consistency.Second,the data set is preprocessed by random initialization of missing values and normalization,and a feasible missing value update rule is derived to obtain the imputation values with the closest variance and the greatest consistency with the complete original values.Next,in a distributed environment,the large-scale data set is divided into multiple groups of random sample partition(RSP)data blocks with the same distribution as the entire data set by taking into account the statistical properties of the large-scale data set.Finally,the DC-MVI algorithm is trained in parallel to obtain the imputation value corresponding to the missing value of the large-scale data set and preserve distribution consistency with the non-missing values.The rationality experiments verify the convergence of the objective function and the contribution of DC-MVI to distribution consistency.In addition,the effectiveness experiments assess the performance of DC-MVI and eight other MVI algorithms(mean,KNN,MICE,RF,EM,SOFT,GAIN,and MIDA)through the following three indicators:distribution consistency,time complexity,and classification accuracy.[Results]The experimental results on seven selected large-scale data sets showed that:1)The objective function of the DC-MVI method was effective,and the missing value update rule was feasible,allowing the imputation values to remain stable throughout the adjustment process;2)the DC-MVI algorithm obtained the smallest maximum mean discrepancy and Jensen-Shannon divergence on all data sets,showing that the proposed method had a more consistent probability distribution with the complete original values under the given significance level;3)the running time of the DC-MVI algorithm tended to be stable in the time comparison experiment,whereas the running time of other state-of-the-art MVI methods increased linearly with data volume;4)the DC-MVI approach could produce imputation values that were more consistent with the original data set compared to existing methods,which was beneficial for subsequent data mining analysis.[Conclusions]Considering the peculiarities and limitations of missing large-scale data,this paper incorporates RSP into the imputation algorithm and derives the update rules of imputation values to restore the data distribution and further confirm the effectiveness and practical performance of DC-MVI in the large-scale data set imputation,such as preserving distribution consistency and increasing imputation quality.The method proposes in this paper achieves the desired result and represents a viable solution to the problem of large-scale data imputation.
作者 余嘉茵 何玉林 崔来中 黄哲学 YU Jiayin;HE Yulin;CUI Laizhong;HUANG Zhexue(Big Data Institute,College of Computer Science&Software Engineering,Shenzhen University,Shenzhen 518060,China;Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ),Shenzhen 518107,China)
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第5期740-753,共14页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金面上项目(61972261) 广东省自然科学基金面上项目(2314050006683) 深圳市基础研究重点项目(JCYJ20220818100205012) 深圳市基础研究面上项目(JCYJ20210324093609026)。
关键词 文字信息处理 缺失值插补 分布一致性 最大均值差异 大规模数据 随机样本划分 分布式计算 word information processing missing value imputation distribution consistency maximum mean discrepancy large-scale data random sample partition distributed computing
  • 相关文献

参考文献4

二级参考文献175

  • 1Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html.
  • 2Bryant R E, Katz R H, Lazowska E D. Big-Data computing : Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf.
  • 3Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www, sciencemag, org/site/ special/data/, 2011.
  • 4Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra, org/ccc/docs/init/bigdata whitepaper, pdf.
  • 5Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [ 2012-10-02 ]. http://www, mekinsey, corn/ Insights]MGI[Research/Teehnology _ and _ Innovation]Big _ data The next frontier for innovation.
  • 6World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012- 10-02]. http://www3, weforum, org/docs/WEF TC MFS BigDataBigImpact_Briefing 2012. pdf.
  • 7Big Data Across the Federal Government [EB/OL]. [2012-10-02]. http://www, whitehouse, gov/sites/default/ files/microsites/ostp/big_data fact sheet_final_ 1. pdf.
  • 8UN Global Pulse. Big Data for Development:Challenges Opportunities [R/OL]. [ 2012-10-02 ]. http://www. unglobalpulse, org/proj ects/BigDataforDevelopment.
  • 9Times N Y. The age of big data fEB/OLd. [2012-10 -02]. http://www, nytimes, com/2012/02/12/sunday review/big- datas-impact in-the-world, html?pagewanted=all.
  • 10Grobelnik M. Big-data computing: Creating revolutionary breakthroughs in commerce, science, and society [R/OL]. [2012-10 -02]. http://videolectures, net/cswc2012_grobelnik_ big_data/.

共引文献2405

同被引文献34

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部