期刊文献+

Electrical property enhancement and lattice thermal conductivity reduction of n-type Mg_(3)Sb_(1.5)Bi_(0.5)-based Zintl compound by In&Se co-doping 被引量:1

原文传递
导出
摘要 Mg_(3)Sb_(1.5)Bi_(0.5)-based Zintl compounds have attracted extensive attention as potential thermoelectric materials due to their earth-abundant elements.However,pure and intrinsic Mg_(3)Sb_(1.5)Bi_(0.5)manifests a poor thermoelectric performance because of its low electrical conductivity of about 3×10^(2)S/m at room temperature.In this work,In and Se co-doping was carried out to optimize the thermoelectric perfor-mance of n-type Mg_(3)Sb_(1.5)Bi_(0.5)-based material.The experimental results revealed that the carrier con-centration and mobility of Mg_(3)Sb_(1.5)Bi_(0.5)significantly increased after In and Se co-doping,leading to an improvement of power factor.Simultaneously,lattice thermal conductivity was significantly reduced due to the large mass difference between In and Mg.A maximum zT of 1.64 at 723 K was obtained for the Mg_(3.17)In_(0.03)Sb_(1.5)Bi_(0.49)Se_(0.01)sample.And an average zT value of about 1.1 between 300 and 723 K was achieved,which insures its possible application at medium temperature range as a non-toxic and low-cost TE material.
出处 《Journal of Materiomics》 SCIE CSCD 2023年第3期431-437,共7页 无机材料学学报(英文)
基金 supported by the Chunhui Program of the Education Ministry of China,and that at the University of Electronic Science and Technology of China was funded by the Department of Science and Technology of Sichuan Province(2021JDTD0030) the National Natural Science Foundation of China(No.62104032,No.62174022).
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部