摘要
根据非奇异M-矩阵的性质和矩阵的特征值包含域定理,结合两个M-矩阵Hadamard积的特征,分别给出q(B°A-1)和q(A°A-1)下界的一个新估计式。对A-1是双随机矩阵时B与A-1的Hadamard积最小特征值下界的估计式进行改进,理论证明这些估计式改进了现有的结果,且这些估计式仅用到矩阵A和B的元素,计算更简捷。通过数值算例表明新估计式的优越性和有效性,估计结果更接近于真实值。
According to the properties of nonsingular M-matrices and the eigenvalue inclusion set,combined with the characteristics of the product of two M-matrices.some new estimation formulas on lower bounds of q(B°A-1)and q(A°A-1)are given.When A-1 is a doubly stochastic matrix,a new lower bound of the minimum eigenvalues of Hadamard product B and A-1 is derived.It is proved that these new bounds have improved the existing results,only applying to the elements of matrix A and B,with easy computation.The experimental date shows that these new inequalities are superior and more valid,and the estimated result is closer to the true value.
作者
周平
李艳艳
高美平
ZHOU Ping;LI Yanyan;GAO Meiping(School of Mathematics and Engineering,Wenshan University,Wenshan 663000,China)
出处
《洛阳理工学院学报(自然科学版)》
2023年第2期74-79,共6页
Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金
云南省教育厅科学研究基金(2022J0949).