摘要
本文研究了非线性边界条件下具有空变系数和吸收项的非局部多孔介质抛物方程解的爆破问题.运用微分不等式技巧,得到了高维空间上非线性边界条件下具有空变系数和吸收项的非局部多孔介质抛物方程全局解的条件.同时,通过构造能量表达式,应用Sobolev不等式等技巧,推出了爆破发生时解的爆破时间上界和下界估计.
In this paper,we study blow-up phenomena of solutions to a nonlocal porous medium parabolic equation with space-dependent coeficients and inner absorp-tion terms under nonlinear boundary conditions.By using a differential technique,we obtain the suficient conditions for the global existence for the parabolic equation with space-dependent coefficients and inner absorption terms under nonlinear boundary conditions in high dimensional spaces.Moreover,an upper bound and a lower bound estimates of blow up time are derived by formulating energy expressions and using Sobolev inequalities and other differential methods.
作者
欧阳柏平
肖胜中
OUYANG BAIPING;XIAO SHENGZHONG(College of Data Science,Guangzhou Huashang College,Guangzhou 511300,China;Scientific Research Department,Guangdong AIB Polytechnic College,Guangzhou 510507,China)
出处
《应用数学学报》
CSCD
北大核心
2023年第3期478-492,共15页
Acta Mathematicae Applicatae Sinica
基金
广东省普通高校重点项目(自然科学)(批准号:2019KZDXM042)
广东省普通高校创新团队(批准号:2020WCXTD008)
广州华商学院校内项目(批准号:2020HSDS01,2021HSKT01)资助项目。
关键词
爆破
多孔介质抛物方程
空变系数
吸收项
blow-up
porous medium parabolic equation
space-dependent coeficient
absorption term