期刊文献+

3D-printed fish gelatin scaffolds for cartilage tissue engineering 被引量:2

原文传递
导出
摘要 Knee osteoarthritis is a chronic disease caused by the deterioration of the knee joint due to various factors such as aging,trauma,and obesity,and the nonrenewable nature of the injured cartilage makes the treatment of osteoarthritis challenging.Here,we present a three-dimensional(3D)printed porous multilayer scaffold based on cold-water fish skin gelatin for osteoarticular cartilage regeneration.To make the scaffold,cold-water fish skin gelatin was combined with sodium alginate to increase viscosity,printability,and mechanical strength,and the hybrid hydrogel was printed according to a pre-designed specific structure using 3D printing technology.Then,the printed scaffolds underwent a double-crosslinking process to enhance their mechanical strength even further.These scaffolds mimic the structure of the original cartilage network in a way that allows chondrocytes to adhere,proliferate,and communicate with each other,transport nutrients,and prevent further damage to the joint.More importantly,we found that cold-water fish gelatin scaffolds were nonimmunogenic,nontoxic,and biodegradable.We also implanted the scaffold into defective rat cartilage for 12 weeks and achieved satisfactory repair results in this animal model.Thus,cold-water fish skin gelatin scaffolds may have broad application potential in regenerative medicine.
出处 《Bioactive Materials》 SCIE CSCD 2023年第8期77-87,共11页 生物活性材料(英文)
基金 supported by the Key Program of NSFC(81730067) Major Project of NSFC(81991514) Jiangsu Provincial Key Medical Center Foundation,Jiangsu Provincial Medical Outstanding Talent Foundation,Jiangsu Provincial Medical Youth Talent Foundation,and Jiangsu Provincial Key Medical Talent Foundation.The Fundamental Research Funds for the Central Universities(14380493,14380494) the National Natural Science Foundation of China(82102511) the Natural Science Foundation of Jiangsu(BK20210021) Research Project of Jiangsu Province Health Committee(M2021031).
  • 相关文献

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部