期刊文献+

基于SRCKF的多传感器融合自适应鲁棒算法 被引量:1

Adaptively robust multi-sensor fusion algorithm based on square-root cubature Kalman filter
下载PDF
导出
摘要 为解决模型误差和异常量测值发生时平方根容积卡尔曼滤波(SRCKF)算法滤波性能下降甚至滤波发散的问题,提出了一种多传感器融合自适应鲁棒算法。基于新息协方差匹配原则设计了鲁棒子系统以抑制量测异常值,同时为克服模型误差使用基于新息修正的低复杂度自适应SRCKF(LCASRCKF)算法设计了自适应子系统,根据2种子系统的特点和局限提出全局融合架构,使系统可以充分平衡并利用滤波过程中先验的模型预测值信息和后验的量测值信息,最终降低估计误差。仿真结果表明:相比鲁棒多渐消因子容积卡尔曼滤波(RMCKF)等算法,所提融合算法在滤波精度、稳定性和收敛速度等方面有明显优势。 To deal with the problem that the square-root cubature Kalman filter(SRCKF)will have declined filtering performance or even filtering diverge when model errors and abnormal measurements occur,an adaptively robust multi-sensor fusion algorithm is proposed.Firstly,a robust subsystem is designed based on the innovation covariance matching principle to suppress abnormal measurements.Then,to overcome the model errors,an adaptive subsystem is designed based on the low complexity adaptive SRCKF(LCASRCKF)algorithm.Finally,according to the characteristics and limitations of the two subsystems,a global fusion architecture is proposed,which enables the system to fully balance and utilize the prior model prediction information and the posterior measurement information in the filtering process,and thus reduce the estimation error.The simulation results show that the proposed fusion algorithm has obvious advantages in terms of filtering accuracy,stability and convergence speed compared with the robust multiple fading factors cubature Kalman filter(RMCKF)and other algorithms.
作者 李春辉 马健 杨永建 肖冰松 邓有为 LI Chunhui;MA Jian;YANG Yongjian;XIAO Bingsong;DENG Youwei(Aeronautics Engineering College,Air Force Engineering University,Xi’an 710038,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第1期220-228,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 空军工程大学校长基金(XZJ2020039)。
关键词 平方根容积卡尔曼滤波 模型误差 异常量测值 多传感器融合 自适应滤波 square-root cubature Kalman filter model errors abnormal measurements multi-sensor fusion adaptive filtering
  • 相关文献

参考文献15

二级参考文献112

共引文献598

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部