期刊文献+

Upper Paleozoic total petroleum system and geological model of natural gas enrichment in Ordos Basin, NW China 被引量:3

下载PDF
导出
摘要 Based on the analysis of Upper Paleozoic source rocks, source-reservoir-caprock assemblage, and gas accumulation characteristics in the Ordos Basin, the gas accumulation geological model of total petroleum system is determined. Then, taking the Carboniferous Benxi Formation and the Permian Taiyuan Formation and Shanxi Formation as examples, the main controlling factors of gas accumulation and enrichment are discussed, and the gas enrichment models of total petroleum system are established. The results show that the source rocks, faults and tight reservoirs and their mutual coupling relations control the distribution and enrichment of gas. Specifically, the distribution and hydrocarbon generation capacity of source rocks control the enrichment degree and distribution range of retained shale gas and tight gas in the source. The coupling between the hydrocarbon generation capacity of source rocks and the physical properties of tight reservoirs controls the distribution and sweet spot development of near-source tight gas in the basin center. The far-source tight gas in the basin margin is mainly controlled by the distribution of faults, and the distribution of inner-source, near-source and far-source gas is adjusted and reformed by faults. Generally, the Upper Paleozoic gas in the Ordos Basin is recognized in four enrichment models: inner-source coalbed gas and shale gas, inner-source tight sandstone gas, near-source tight gas, and far-source fault-transported gas. In the Ordos Basin, inner-source tight gas and near-source tight gas are the current focuses of exploration, and inner-source coalbed gas and shale gas and far-source gas will be important potential targets in the future.
出处 《Petroleum Exploration and Development》 SCIE 2023年第2期281-292,共12页 石油勘探与开发(英文版)
基金 Supported by the National Natural Science Foundation of China (41872128) the CNPC Major Science and Technology Project (2021DJ0101)。
  • 相关文献

同被引文献39

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部