摘要
在云制造环境下,针对分布式3D打印任务与3D打印设备资源的供需匹配问题,首先,充分考虑云制造环境下用户订单与3D打印设备资源在空间的异构性以及生产目标要求多样的特征,提出了一种云制造3D打印服务平台,并在此基础上构建了云制造下分布式3D打印任务调度的多目标优化模型,可以实现分布式3D打印任务的时间和成本最优;然后,提出了一种改进非支配排序遗传算法(NSGA-Ⅱ)求解该多目标优化模型,并与传统NSGA-Ⅱ算法进行对比分析,得到包含多个解的Pareto最优解集;最后通过算例仿真验证了其有效性,发现其能够很好地解决云制造环境下的分布式3D打印任务供需匹配问题。
In the cloud manufacturing environment,in order to match the supply and demand of distributed 3D printing tasks and 3D printing equipment resources.Firstly,considering the spatial heterogeneity of user orders and 3D printing equipment resources in cloud manufacturing environment,and the characteristics of diverse production objectives,a cloud manufacturing 3D printing service platform is proposed,and on this basis,a multi-objective optimization model of distributed 3D printing task scheduling in cloud manufacturing is constructed,which can achieve the optimal time and cost of distributed 3D printing tasks;Then,an improved non dominated sorting genetic algorithm(NSGA-Ⅱ)is proposed to solve the multi-objective optimization model.Compared with the traditional NSGA-Ⅱalgorithm,the Pareto optimal solution set containing multiple solutions is obtained.Finally,it is verified by a simulation example in view of its effectiveness,it is found that it can well solve the problem of matching supply and demand of distributed 3D printing tasks in the cloud manufacturing environment.
作者
刘刚
何建佳
LIU Gang;HE Jian-jia(Business School,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《机械设计与制造》
北大核心
2023年第6期125-129,共5页
Machinery Design & Manufacture
基金
国家自然科学基金项目(71871144)
上海理工大学科技发展项目(2020KJFZ046)。
关键词
云制造
3D打印
任务调度
多目标优化
改进的NSGA-Ⅱ算法
Cloud Manufacturing
3D Printing
Device Resource Matching
Multi-Objective Optimization
Improve the NSGA-ⅡAlgorithm