摘要
随着电网的迅速发展,施工现场作业也出现了各种各样的情况,针对智慧工地背景下,施工人员安全防护用具的识别问题,提出基于DBN-SVM的电力智慧工地异常行为识别方法。通过在复杂场景中收集工作人员佩戴安全帽和不戴安全帽的图片,从而对数据图像预处理使其满足DBN模型的训练要求,然后搭建DBN-SVM模型,使用SVM方法进行分类识别,实现目标检测。实验结果表明这种方法可以有效地用于识别防护和安全设备,改善建筑工地工作人员的安全管理现状。
With the rapid development of the power grid,a variety of situations have also appeared in the construction site operation.In view of the identification problem of safety protection equipment for construction personnel under the background of smart site,this paper proposes a DBN-SVM based abnormal behavior identification method for the power smart site.Through collecting pictures of staff wearing and not wearing helmets in complex scenes,the data and images are preprocessed to meet the training requirements of DBN model.Then,the DBN-SVM model is built,and the SVM method is used for classification recognition and target detection.The experimental results show that this method can be effectively used to identify protection and safety equipment and improve the safety management status of construction site workers.
作者
赵恒
胡胜男
徐进霞
储昭杰
ZHAO Heng;HU Shengnan;XU Jinxia;CHU Zhaojie(State Grid Jiangsu Electric Power Co.,Ltd Research Institute,Jiangsu Nanjing 211103 China;Wuhan NARI Co Ltd.,State Grid Electric Power Research Institute,Wuhan 430074 China)
出处
《自动化与仪器仪表》
2023年第5期92-95,共4页
Automation & Instrumentation
基金
国家电网有限公司总部科技项目,“现代智慧仓储系统及智能物流装备关键技术研究”,1400-202118268A-0-0-00。
关键词
智慧工地
DBN
SVM
安全帽
异常检测
smart construction site
DBN
the SVM
safety helmet
abnormal detection