期刊文献+

基于轻量化深度学习VGG16网络模型的表面缺陷检测方法 被引量:7

Surface Defect Detection Method Based on Lightweight Deep Learning VGG16Net
原文传递
导出
摘要 零件表面缺陷是产品质量的重要组成部分,零件在线检测可以解决产品批量质量问题,已成为质量控制的未来发展趋势。人工检测方法存在检测精度低、漏检率高等问题,而通过机器视觉和深度学习相结合的在线检测成为研究热点。但是目前多数深度学习模型存在模型结构复杂、预测耗时长的缺点,不满足实时检测的需求。为了提高产品表面缺陷检测的效率和准确率,设计了一种轻量化深度学习VGG16网络模型,通过对VGG16Net进行结构优化与剪枝操作搭建轻量化识别模型,并构建表面缺陷数据集进行训练与预测。在标准表面缺陷数据集上,准确率达到0.949;搭建实验测试平台,对比原始VGG16网络,改进后的网络在剪枝率为50%时,准确率达到0.907,单张图片预测耗时为0.067s,模型压缩率为59.79%。轻量化表面缺陷检测方法具有高效自动、智能化等优点。 Surface defect is an important part of product quality.Online inspection can solve the problem of product quality,which has become the future trend of quality control.Manual detection methods have problems such as low detection accuracy and high missed detection rate.Online detection by machine vision and deep learning has become a research hotspot.However,most of the deep learning models have complex structures and long prediction time,which do not meet the requirement of real-time detection.In order to improve the efficiency and accuracy,this paper designs a lightweight deep learning VGG16Net by structural optimization and pruning operations,and constructs a surface defect dataset for training and prediction.On the standard surface defect dataset,the accuracy rate reaches 0.949.On the experimental test platform,with pruning rate of 50%,the final recognition accuracy rate reaches 0.907,single image prediction consumes 0.067 seconds,the compression rate is 59.79%.The lightweight surface defect detection method proposed in this paper has the advantages of high efficiency,automation and intelligence.
作者 方宇伦 陈雪纯 杜世昌 吕君 王勇 FANG Yuun;CHEN Xuechun;DU Shichang;Lv Jun;WANG Yong(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;School of Economics and Management,East China Normal University,Shanghai 200241,China;LEADO Industrial Intelligent Technology Co.,Ltd.,Changshu Jiangsu 215558,China)
出处 《机械设计与研究》 CSCD 北大核心 2023年第2期143-147,共5页 Machine Design And Research
基金 姑苏创新创业领军人才计划(2XL2021021) 常熟市科技领军人才创新创业计划(CSRC2066)资助项目。
关键词 缺陷检测 深度学习 模型剪枝 VGG16 defect detection deep learning model pruning VGG16
  • 相关文献

参考文献9

二级参考文献195

  • 1薛利军,张虎,李自田.采用机器视觉的药品包装实时在线检测系统的研究[J].包装工程,2005,26(2):52-54. 被引量:23
  • 2雷小军,付庄,曹其新,赵言正.海底管道检测机器人自主缺陷定位的模糊控制研究[J].机器人,2005,27(3):252-255. 被引量:6
  • 3田原,都东,蔡国瑞,王力,张骅.Automatic Defect Detection in X-Ray Images Using Image Data Fusion[J].Tsinghua Science and Technology,2006,11(6):720-724. 被引量:8
  • 4Mohan M Trivedi. ChuXin Chen, Suresh B Marapane. A Vision System for Robotic Inspection and Manipulation [J]. IEEE: Computer, 1989. 6:91-97.
  • 5C R Wcisbin,G de Saussure,J R Einstein,et al.Antonomous Mobile Robot Natigation and Learning [J].IEEE:Computer,1989.6:29-35.
  • 6Kap Luk Chan,et al.Identifying IC Type from Its Package using Character Recognition Technique[J].SPIE Vol.3185:50-57.
  • 7Rafael C Gonzalez,Richard E Woods..Digital Image Processing Second Edition[M]..北京:电子工业出版社,,2003,3....
  • 8田涌涛 洪锡军 王有庆.计算机视觉在先进制造技术中的应用[J].自动化与检测,:262-262.
  • 9李峰..机器视觉应用技术研究[D]..浙江大学,,2003.2..
  • 10吴健康,肖锦玉.机器视觉基本理论和方法[M].合肥:中国科学技术大学出版社,1993.4.

共引文献548

同被引文献75

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部