摘要
实时烈度预测可在破坏性地震波到达前,根据P波估计地震可能造成的最大影响.预警对象可以采取措施,降低可能造成的损失.P波位移幅值是一种有效估计地震动峰值的参数,然而单个或多个参数难以全面表征地震动中的信息.同时,参数的计算需要确定时间窗大小,无法实现连续预测.为了解决上述问题,提出了一种基于长短期记忆网络的实时地震烈度预测模型.基于2010-2021年K-NET数据构建模型,并选取2022年3月MJMA7.3地震事件作为案例验证模型.结果表明,P波到达后可以在记录的每个时间步预测烈度,P波到达3 s时在测试集中准确率为96.47%.提出的LSTM模型改善了烈度预测的准确性和连续性,可为地震预警、应急响应等提供科学依据.
Real-time intensity prediction can estimate the maximum possible impact of an earthquake based on P-wave before the arrival of destructive seismic waves.Earthquake early warning targets can take measures to reduce the potential damage.Peak Pwave displacement amplitude is a parameter that effectively estimates the peak ground motion,however,it is difficult to fully characterize the information in ground motion by a single or multiple parameters.Meanwhile,the calculation of the parameter requires the determination of the time window size,and continuous prediction cannot be achieved.To solve the above problems,a prediction model based on long short-term memory network is proposed in this paper.The model is constructed based on K-NET data from 2010‒2021,and the MJMA 7.3 earthquake event in March 2022 is selected as a case to validate the model.The results show that the intensity can be predicted at each time step of the record after the P-wave arrival,and the accuracy in the test set is 96.47%at 3 seconds after P-wave arrival.The LSTM model proposed in this paper improves the accuracy and continuity of intensity prediction and can provide a scientific basis for earthquake early warning and emergency response.
作者
胡进军
丁祎天
张辉
靳超越
汤超
Hu Jinjun;Ding Yitian;Zhang Hui;Jin Chaoyue;Tang Chao(Key Laboratory of Earthquake Engineering and Engineering Vibration,Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,China;Key Laboratory of Earthquake Disaster Mitigation,Ministry of Emergency Management,Harbin 150080,China)
出处
《地球科学》
EI
CAS
CSCD
北大核心
2023年第5期1853-1864,共12页
Earth Science
基金
国家自然科学基金重点项目(No.U1939210)
中国地震局工程力学研究所基本科研业务费专项(No.2021EEEVL0103).
关键词
地震烈度
实时
神经网络
深度学习
地震预警
工程地质.
seismic intensity
real time
neural network
deep learning
earthquake early warning
engineering geology.