期刊文献+

调和函数类的卷积的凸半径估计

The Convex Radius Estimation of Convolution of Harmonic Functions
原文传递
导出
摘要 利用调和函数的偏差性质、系数估计等方法对调和映照类的卷积的凸半径进行了深入研究,得到了一系列精确的结论.此外,通过选取不同的参数值得到凸半径与参数之间的关系. In this paper,we study the convex radius of convolution of harmonic mapping class by using the deviation property of harmonic function and coefficient estimation,and obtain a series of accurate conclusions.In addition,the relationship between convex radius and parameters is obtained by selecting different parameter values.
作者 谢志春 吴丽娟 李东征 XIE Zhi-chun;WU Li-juan;LI Dong-zheng(Data Science and Intelligent Engineering School,Xiamen Institute of Technology,Xiamen 361021,China;Public Teaching Department,Xiamen Medical College,Xiamen 361023,China)
出处 《数学的实践与认识》 2023年第5期226-235,共10页 Mathematics in Practice and Theory
基金 福建省中青年教师教育科研项目(JAT200839) 厦门工学院科研创新团队项目(KYTD202005) 厦门工学院科研项目(KYT2020008)。
关键词 调和函数 卷积 凸半径 harmonic mapping convolution convex radius
  • 相关文献

参考文献9

二级参考文献67

  • 1LIU MingSheng School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China.Estimates on Bloch constants for planar harmonic mappings[J].Science China Mathematics,2009,52(1):87-93. 被引量:16
  • 2CHEN HuaiHui Department of Mathematics, Nanjing Normal University, Nanjing 210097, China.Some new results on planar harmonic mappings[J].Science China Mathematics,2010,53(3):597-604. 被引量:2
  • 3黄心中.给定复伸张单叶调和映照的面积偏差[J].华侨大学学报(自然科学版),2007,28(2):208-211. 被引量:6
  • 4CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions[J]. Ann Acad Sci I Math, 1984,9A(1)3-25.
  • 5SILVERMAN H, SILVIA E M. Subclasses of harmonic univalent functions[J]. New Zeal J Math, 1999,28(2) :275- 284.
  • 6OZTURK M, YALGIN S, YAMANKARADENIZ M A subclass of harmonic univalent functions with negative coefficients[J]. Appl Math Comput, 2003,142(2/3) : 469-476.
  • 7OZTURK M, YALCIN S, YAMANKARADENIZ M. Convex subclass of harmonic starlike functions[J]. Appl Math Comput, 2004,154(2) : 449-459.
  • 8JAHANGIRI J M, SILVERMAN H. Harmonic close-to-convex mappings[J]. J Appl Math and Stochastic Analysis, 2002,15(1) :23-28.
  • 9JAHANGIRI J M. Harmonic functions starlike in the unit disk[J]. J Math Anal, 1999,235(2):470-477.
  • 10PAVLOVIC M Boundary correspondence under harmonic quasiconformal homeomorphisma of the unit disk[J]. Ann Aead Sci Fenn (Series A1): Math,2002,27(2):365-372.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部