摘要
危险气体检测技术是石化等企业安全生产的必要保障之一,在工业生产中有着重要的作用。为了弥补现阶段基于红外成像技术的气体泄漏检测算法单帧检测的不足,提高检测精度,本文提出了光流增强的红外成像气体泄漏检测方法。首先使用光流网络提取视频中的运动特征,然后将运动特征与原图融合生成光流增强的气体泄漏图像送入YOLO网络进行检测,最终确定视频中是否存在气体泄漏并获取其位置信息。经过同增强前数据的对比测试,该方法将召回率保持在可接受范围内的同时,虚警率由17.87%降低至0.60%、精确率由77.21%提升至99.99%;检测速度约为13 fps,可实现实时检测。
Hazardous gas detection technology is one of the necessary guarantees of safety in many industries such as petrochemical enterprises,and plays an important role in industrial production.To make up for the shortage of single-frame gas leak detection algorithm which based on infrared imaging technology and improve the detection accuracy,a method of optical flow enhanced infrared imaging gas leak detection was proposed in this paper.The motion features in the video are extracted with the optical flow network in the first step.Then the motion features are fused with the original image to generate an optical flow enhanced gas leak image to be sent to the YOLO network for detection.Finally,whether there is a leakage in the video was determined and its location was obtained.After a comparison with the data before enhancement,the method keeps the recall rate in an acceptable range while the false alarm rate is reduced from 17.87%to 0.60%,and precision is improved from 77.21%to 99.99%.The detection speed is about 13 fps,which satisfies the needs of real-time detection.
作者
李泉成
曹江涛
姬晓飞
Li Quancheng;Cao Jiangtao;Ji Xiaofei(School of Information and Control Engineering,Liaoning Petrochemical University,Fushun 113001,China;School of Automation,Shenyang Aerospace University,Shenyang 110136,China)
出处
《电子测量与仪器学报》
CSCD
北大核心
2023年第3期50-56,共7页
Journal of Electronic Measurement and Instrumentation
基金
国家自然科学基金(61673199)项目资助。
关键词
光流法
气体泄漏检测
红外成像
计算机视觉
optical flow
gas leak detection
infrared imaging
computer vision