期刊文献+

用户认知视角下在线问诊平台医生推荐研究 被引量:2

Research on Doctor Recommendation of Online"Ask the Doctor"Platforms Based on the Perspective of Users Recognition
原文传递
导出
摘要 [目的/意义]针对在线问诊平台中医生推荐满意度较低的问题,探究如何将信息技术与用户认知相结合以提升医生推荐系统的效果,有助于优化在线问诊平台的用户体验。[方法/过程]首先,基于1500名医生的基本信息和78万余条用户提问,对比TF-IDF、Doc2Vec和Word2Vec三种词向量模型的医生推荐效果,以最优模型构建医生推荐系统原型:然后,通过用户实验和访谈获取用户使用该系统的行为数据,深入挖掘在线问诊平台医生推荐情境中的用户认知与意义构建过程;最后,从用户角度提出模型优化思路,实现原型系统的改进。[结果/结论]基于Word2Vec词向量模型的医生推荐效果最优,前10位医生候选集中88%的医生有能力回答用户问题:用户实验结果显示,科室信息与医生专业极大影响用户选择,医生曾回答过的相似问题是用户的重要参考信息:基于以上结果,提出并实现建立科室预测分类器以及为健康医学关键词赋予较高权重的两种模型优化思路,并通过匹配度指数对医生推荐结果进行优化排序。结果表明,两种方法均可提高医生推荐系统的准确度,证明用户认知与人工智能算法结合具有可行性。 [Purpose/Significance]In view of the low satisfaction of online doctor recommendation,this paper explores how to combine information technology and user cognition to improve the effect of the doctor recommendation system,which helps to optimize the user experience of online“Ask the Doctor”platform.[Method/Process]First,we established a doctor recommender prototype system based on the relevance theory and the NLP method based on the information of 1500 doctors and more than 780 thousands user questions;Then,did a qualitative study to analyze user's thoughts in the process of using the recommender based on the sense-making;Finally,we optimized the recommender though considering the users'perspectives.[Result/Conclusion]Word2Vec model has the best effect in the doctor recommendation task,which was up to 88%doctors in TOP10 doctor candidates are able to answer user questions.The user experiment results show that most users attach great importance to the doctor's department and areas of expertise while similar questions answered by doctors.When judging the similarity of questions,users mainly pay attention to the medical terms,and avoid the rrelevant medical keywords.Based on these,two model optimizations were identified,including(1)a function of predicting departments was incorporated into the system,and doctors belonging to these departments were ranked forward,(2)a healthcare wordlist was built and higher weights were given to these words when calculating text similarity.Results show that these two methods improved the accuracy of the doctor recommender system,which indicates that the integration of the Al-related algorithms and the user's thoughts can be well implemented.
作者 王若佳 王继民 Wang Ruojia;Wang Jimin(School of Management,Beijing University of Traditional Chinese Medicine,Beijing 100105;Department of Information Management,Peking University,Beijing 100871)
出处 《图书情报工作》 北大核心 2023年第10期128-138,共11页 Library and Information Service
关键词 医生推荐 用户视角 在线问诊 Word2Vec 意义构建 doctor recommendation user perspective ask the doctor Word2Vec sense-making
  • 相关文献

参考文献5

二级参考文献35

  • 1苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 2JURCZYK P,AGICHTEIN E.Discovering authorities in question answer communities by using link analysis[C]∥Proceedings of the 16th ACM Conference on Information and Knowledge Management.New York,USA:ACM,2007:919-922.
  • 3MOHAMED B,BENOIT D,WANG Shengrui.Identifying authoritative actors in question-answering forums:the case of yahoo!answers[C]∥Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM,2008:866-874.
  • 4KLEINBERG J M.Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,46(5):604-632.
  • 5ZHOU Guangyou,LAI Siwei,LIU Kang,et al.Topic-sensitive probabilistic model for expert finding in question answer communities[C]∥Proceedings of the21st ACM International Conference on Information and Knowledge Management.New York,USA:ACM,2012:1662-1666.
  • 6ZHOU Yanhong,CONG Gao,CUI Bin,et al.Routing questions to the right users in online communities[C]∥Proceedings of the 25th IEEE International Conference on Data Engineering.Piscataway,NJ,USA:IEEE,2009:700-711.
  • 7LI Baichuan,KING I,LYU M R.Question routing in community question answering:putting category in its place[C]∥Proceedings of the 20th ACM International Conference on Information and Knowledge Management.New York,USA:ACM,2011:2041-2044.
  • 8LI Baichuan,KING I.Routing questions to appropriate answerers in community question answering services[C]∥Proceedings of the 19th ACM International Conference on Information and Knowledge Management.New York,USA:ACM,2010:2041-2044.
  • 9HUANG Yuchi,LIU Qingshan,ZHANG Shaoting,et al.Image retrieval via probabilistic hypergraph ranking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2010:3376-3383.
  • 10HUANG Yuchi,LIU Qingshan,LV Fengjun,et al.Unsupervised image categorization by hypergraph partition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(6):1266-1273.

共引文献29

同被引文献34

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部