摘要
All inorganic CsPbI_(3)perovskite solar cells(PSCs)have emerged as disruptive photovoltaic technology owing to their admirable photoelectric properties and the non-volatile active layer.However,the phase instability against moisture severely limits the fabrication environment for the high-efficiency devices,breaking through the confinement region to achieve scalable manufacturing has been the primary issue for future commercialization.Here,we develop a curing-anti-solvent strategy for fabricating high-quality and stable black-phase CsPbI_(3)perovskite films in ambient air by introducing an inorganic polymer perhydropolysilazane(PHPS)into methyl acetate to form anti-template agent.The cross-linked PHPS reduces moisture erosions while the hydrolyzate silanol network(–Si(OH)_(4)^(–))controls the perovskite crystal growth by forming Lewis adducts with PbI_(2)during the fabrication.The polycondensation adduct of Si–O–Si/Si–O–Pb strongly binds to CsPbI_(3)grains as a shield layer to hamper phase transition.Using the inorganic CsPbI_(3)perovskite thin-film with PHPS-modified anti-solvent processing as the light absorber,the n–i–p planar solar cell achieved an efficiency of 19.17%under standard illumination test conditions.More importantly,the devices showed excellent moisture stability,retaining about 90%of the initial efficiency after 1000 h under 30%RH.
基金
support from the Natural Science Foundation of China(no.22005071)
the Natural Science Special(Special Post)Research Foundation of Guizhou University(no.2020-13)
The cultivation programs Research Foundation of Guizhou University(no.2019-64).