期刊文献+

双层壁冷却结构综合冷却效率和相对压力损失多目标优化

Multi-Objective Optimization of a Double-Wall Cooling Structure for Overall Cooling Effectiveness and Relative Pressure Drop
下载PDF
导出
摘要 在典型燃烧室工作环境下,针对特定双层壁冷却结构,以综合冷却效率和相对压力损失为优化目标,采用径向基神经网络构建数学模型,通过遗传优化算法实现多目标优化,旨在提高其气动和传热性能。在给定的双层壁冷却结构参数范围内,优化后双层壁冷却结构的最大综合冷却效率为0.89,而相对压力损失可降至0.17%。 In a typical combustion chamber environment,the overall cooling effectiveness and relative pressure drop of a specific double-wall cooling structure were set as the optimization indicators,and the mathematical model was built by radial basis function neural network.Through a genetic optimization algorithm,multi-objectives optimization were achieved to improve its aerodynamic and heat transfer performance.Within the given parameter range of the double-wall cooling structure,the overall cooling effectiveness of double-wall cooling structure is optimized to 0.89 for the maximum comprehensive cooling efficiency index,and the relative pressure drop of double-wall cooling structure can be reduced to 0.17%for the minimum relative pressure drop index.
作者 王晨 张靖周 王春华 WANG Chen;ZHANG Jingzhou;WANG Chunhua(College of Energy and Environment,Zhongyuan University of Technology,Zhengzhou 451191,China;Jiangsu Province Key Laboratory of Aerospace Power Systems,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《内燃机工程》 CAS CSCD 北大核心 2023年第3期101-108,共8页 Chinese Internal Combustion Engine Engineering
关键词 双层壁冷却结构 综合冷却效率 相对压力损失 遗传优化算法 double-wall cooling structure overall cooling effectiveness relative pressure drop genetic optimization algorithm
  • 相关文献

参考文献5

二级参考文献38

  • 1全栋梁,刘松龄,李江海.层板冷却结构强化换热机理[J].航空动力学报,2004,19(6):860-865. 被引量:17
  • 2Rolls-Royce Aerospace Group.喷气发动机:第4版[M].北京:罗尔斯-罗伊斯公司技术出版物部,1986..
  • 3Mongia H C,Reider S B.Allsion combustion research and development activities[R].AIAA 28521402,1985.
  • 4Rolls-Royce Aerospace Group.The jet engine[Z].Rolls-Royce Group Publishing Company,England:1986.
  • 5Nealy D A,Reider S B.Evaluation of laminated porous wall material for combustor liner cooling[J].ASME Journal of Engineering for Power,1980,102:268-276.
  • 6Mongia H C,Reider S B.Allison combustion research and development activities[R].AIAA 28521402,1985.
  • 7Rhee D H, Choi J H, Cho H H. Flow and heat (mass) transfer characteristics in an impingement/effusion cooling system with erossflow. ASME paper 2002-GT-30474, 2002.
  • 8Rhee D H, Choi J H, Cho H H. Heat (mass) transfer on effusion plate in impingement/effusion cooling systems. Journal of Thermophysics and geat Transfer 2003; 17(1): 95-102.
  • 9Quan D L, Liu S L, Li J H, et al. Investigation on cooling performance of impingement cooling devices combined with pins. ASME paper 2005-GT-68930, 2005.
  • 10Funazake K, Imamatsu N, Yamawaki S. Heat transfer measurements of an integrated cooling configuration designed for ultra-high temperature turbine blades. Proceedings of the International Gas Turbine Congress Vol.Ⅱ, Kobe, 1999: 833-839.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部