期刊文献+

基于LAL的微博舆情演化趋势预测与实证研究

Prediction and Empirical Study on the Evolution Trend of Public Opinion in Microblog Based on LAL
下载PDF
导出
摘要 [目的/意义]实现对微博舆情演化趋势的有效预测,为舆情预警和相关部门舆情治理提供有力依据。[方法/过程]定义了微博舆情信息量,并提出了一种微博舆情信息量组合预测模型,该模型分别利用Logistic模型学习舆情信息量变化规律,ARIMA模型学习舆情信息量线性关系,LSTM模型学习舆情信息量非线性关系。在此基础上,使用方差倒数法求得组合权重,最后将各单项预测结果进行加权求和得到组合预测结果。[结果/结论]实验表明,Logistic-ARIMA-LSTM(LAL)组合预测模型不仅能够捕捉舆情信息量的整体演化趋势,而且能够捕捉时间序列中的线性关系和非线性关系,有效降低预测误差。LAL模型可以应用于舆情预警、舆情反转识别和舆情推演等方面,为相关部门进行舆情治理提供参考。 [Purpose/significance]The paper aims to realize the effective prediction of the evolution trend of public opinion in mi⁃croblogs,and provide a strong basis for public opinion early warning and public opinion management of relevant departments.[Method/process]Information quantity of public opinion in microblog is defined,and a combined prediction model is proposed.The model uses Logistic model to learn the changing law,uses ARIMA model to learn the linear relationship,and uses LSTM model to learn the nonlinear relationship.On this basis,the combined weights are obtained by using the reciprocal variance method,and finally the combined predic⁃tion results are obtained by weighted summation of the individual prediction results.[Result/conclusion]The experiment shows that the Logistic-ARIMA-LSTM(LAL)combined forecasting model can not only capture the overall evolution trend of public opinion informa⁃tion,but also capture the linear relationship and nonlinear relationship in time sequence,thus effectively reducing the prediction errors.The LAL model can be applied to public opinion early warning,public opinion reversal identification and public opinion deduction,which provides reference for relevant departments’public opinion management.
作者 钟义勇 何巍 张鹏 张霁阳 兰月新 Zhong Yiyong;He Wei;Zhang Peng;Zhang Jiyang;Lan Yuexin(School of Intelligent Police,China People’s Police University,Langfang Hebei 065000)
出处 《情报探索》 2023年第6期23-30,共8页 Information Research
基金 教育部人文社会科学研究一般项目“基于知识图谱的突发事件网民情绪风险感知与引导机制研究”(项目编号:21YJC860009) 河北省人力资源和社会保障研究课题“基于大数据的社会保障舆情风险评估研究”(项目编号:JRS-2021-2019)的成果之一。
关键词 网络舆情 组合预测 LOGISTIC模型 时间序列 online public opinion combined prediction Logistic model time sequence
  • 相关文献

参考文献28

二级参考文献259

共引文献461

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部