期刊文献+

基于快速交替引导滤波和CNN的红外与可见光图像融合 被引量:2

Infrared and visible image fusion based on fast alternating guided filtering and CNN
下载PDF
导出
摘要 为了解决红外与可见光图像融合中出现细节信息丢失,边缘模糊以及伪影的问题,本文提出一种快速交替引导滤波,在保证融合图像质量的前提下有效提高运行效率,结合CNN(卷积神经网络)以及红外特征提取进行有效的融合。首先,对源图像利用四叉树分解和贝塞尔插值来提取红外亮度特征结合可见光图像得到初始融合图像。其次,通过快速交替引导滤波获取源图像的基础层与细节层信息,基础层通过CNN与拉普拉斯变换得到融合后的基础图像,细节层通过显著性测量的方法得到融合后的细节图像。最后,将初始融合图、基础融合图以及细节融合图进行相加得到最终融合结果。本算法涉及到的快速交替引导滤波以及特征提取性能使得最终融合结果中包含丰富的纹理细节信息,边缘清晰。经实验表明,本算法所得融合结果在视觉方面具有较好的保真度,客观评价指标较对比方法其信息熵、标准差、空间频率、小波特征互信息、视觉保真度以及平均梯度分别平均提高了9.9%,6.8%,43.6%,11.3%,32.3%,47.1%。 In order to solve the problems of the loss of detail information,blurred edges,and artifacts in infrared and visible image fusion,this paper proposes a fast alternating guided filter,which significantly increases the operation efficiency while ensuring the quality of the fused image.The proposed filer combines a convolutional neural network(CNN)and infrared feature extraction effective fusion.First,quadtree decomposition and Bessel interpolation are used to extract the infrared brightness features of the source images,and the initial fusion image is obtained by combining the visible image.Second,the information of the base layer and the detail layer of the source images is obtained through fast alternating guided filtering.The base layer obtains the fused base image through the CNN and Laplace transform,and the detail layer obtains the fused detail image through the saliency measurement method.Finally,the initial fusion map,basic fusion map,and detail fusion map are added to obtain the final fusion result.Because of the fast alternating guided filtering and feature extraction performance of this algorithm,the final fusion result contains rich texture details and clear edges.The experimental results indicate that the fusion results obtained by the algorithm have good fidelity in vision,and its objective evaluation indicators are compared with those of other methods.The information entropy,standard deviation,spatial frequency,wavelet feature mutual information,visual fidelity,and average gradient show improvements by 9.9%,6.8%,43.6%,11.3%,32.3%,and 47.1%,respectively,on average.
作者 杨艳春 李永萍 党建武 王阳萍 YANG Yanchun;LI Yongping;DANG Jianwu;WANG Yangping(School of Electronical and Information Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2023年第10期1548-1562,共15页 Optics and Precision Engineering
基金 长江学者和创新团队发展计划资助(No.IRT_16R36) 国家自然科学基金(No.62067006) 甘肃省科技计划项目(No.18JR3RA104) 甘肃省高等学校产业支撑计划项目(No.2020C-19) 兰州市科技计划项目(No.2019-4-49) 甘肃省教育厅:青年博士基金项目2022QB-067 甘肃省自然科学基金项目(No.21JR7RA300) 兰州交通大学天佑创新团队(No.TY202003) 兰州交通大学—天津大学联合创新基金项目(No.2021052)。
关键词 快速交替引导滤波 红外特征提取 卷积神经网络 红外与可见光图像融合 fast alternating guided filtering infrared feature extraction convolutional neural network infrared and visible image fusion
  • 相关文献

参考文献5

二级参考文献41

  • 1杜峰,施文康,邓勇,朱振幅.一种快速红外图像分割方法[J].红外与毫米波学报,2005,24(5):370-373. 被引量:31
  • 2刘盛鹏,方勇.基于Contourlet变换和IPCNN的融合算法及其在可见光与红外线图像融合中的应用[J].红外与毫米波学报,2007,26(3):217-221. 被引量:34
  • 3LUO X Y,ZHANG J, DAI Q H. A regional image fusion based on similarity characteristics [J]. Sig- nal Processing, 2012,92: 1268-1280.
  • 4PAJARES G, J. M. de la CRUZ. A wavelet-based image fusion tutorial [J ]. Pattern Recognition, 2004,37(9) : 1855-1872.
  • 5CHAI Y, LI H F, LI ZH F. Multifocus image fu- sion scheme using focused region detection and mul- tiresolustion [J]. Optics Communications, 2011,284:4376-4389.
  • 6YANG B, LI SH T, Pixel-level image fusion with simultaneous orthogonal matching pursuit FJ~. In- formation Fusion, 2012, 13: 10-19.
  • 7DO M N, VETTERLI M. The contourlet trans- form= an efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14(12) : 2091-2106.
  • 8CUNHAALDa, ZHOUJP, DOMN. Nonsub- sampled contourlet transform: theory, design, and applications EJ]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.
  • 9WNAG Z, BOVIK A C, SHEIKH H R, et al..Image quality assessment: from error visibility to structural similarity [J-~. IEEE Transactions on Image Processing, 2004,13(4): 600-612.
  • 10LIT J, WANG Y Y. Biological image fusion using a NSCT based variable-weight method [J]. Infor- mation Fusion, 2011,12 : 85-92.

共引文献97

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部