摘要
ATO(列车自动运行)技术通过控制算法实现列车运行速度自动调节,通过对控制算法进行优化,可使列车运行速度更加贴合目标速度。轨道交通列车作为具有高度重复性的非线性动力学系统,在固定线路的时间轴和批次轴具有二维动态演化的特性,因此考虑将二维模型迭代学习控制应用于轨道交通列车。不同车厢在列车运行时所受空气阻力不同,将列车车厢分为头、中、尾三类,求解基于多质点模型的列车动力学方程,对其进行线性化处理,得到列车的状态空间方程;应用二维系统理论,将其转换为二维Roesser模型;设计范数优化迭代学习控制算法,将其作为二维模型的输入信号,验证了新建立的二维模型具有渐进稳定性。同时,选择市域铁路D型列车组作为研究对象,通过对速度、位移追踪仿真,验证了优化后算法的可行性;并选择了两种常用的一维系统ILC(迭代学习控制)进行速度追踪仿真,通过比较三者的追踪误差,验证了优化后算法的追踪性能优于其余两者。
ATO(automatic train operation)technology realizes automatic adjustment of train operating speed through control algorithms,and by optimizing the control algorithm,the train operating speed can be better matched to the target speed.As a highly repetitive nonlinear dynamical system,the rail transit train has the characteristics of two-dimensional dynamic evolution in the time axis and batch axis of a fixed line.Thererfore,the two-dimensional model ILC(iterative learning control)is considered for application to rail transit train.Different train compartments experience different air resistance during train operation,and the train compartments are divided into three categories:head,middle and tail.The train dynamics equation is solved based on a multi-particle model.The train state space equation is obtained by linearizing the equation,and the two-dimensional system theory is used to convert it into a two-dimensional Roesser model.The norm optimal ILC algorithm is designed as the input signal of the two-dimensional model,and the stability of the two-dimensional model is verified.The D-type train set of city railway is selected as the research object,feasibility of the optimized algorithm is verified through tracking simulation of speed and displacement.Two commonly used one-dimensional systems ILC are selected for speed tracking simulation.By comparing the tracking errors of the above three,the superiority of the optimized algorithm over the other two is verified.
作者
王斌
WANG Bin(Operation Branch of Zhengzhou Metro Group Co.,Ltd.,450018,Zhengzhou,China)
出处
《城市轨道交通研究》
北大核心
2023年第6期267-271,共5页
Urban Mass Transit