摘要
柔性导电材料具备良好的柔韧以及导电性能,在医疗、可穿戴设备和传感器等领域得到广泛的应用。通过真空无压烧结工艺制备出MAX相材料Ti_(3)AlC_(2),其烧结产物的纯度高达99%,并通过液相化学刻蚀法制备Ti_(3)C_(2)T_(x)(MXene),最后采用溶胀渗透法将Ti_(3)C_(2)T_(x)与聚二甲基硅氧烷(PDMS)进行复合,制备出了Ti_(3)C_(2)T_(x)/PDMS柔性导电复合材料。通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)对MAX以及MXene进行结构表征,并测试纯PDMS与MXene/PDMS复合材料的力学性能、电学性能。结果表明,在PDMS中掺入的Ti_(3)C_(2)T_(x)的拉力-形变图形、弹性模量、拉伸强度和断裂伸长率与纯PDMS相比均无明显差异,力学性能与纯PDMS基本相似。不同水浴渗透温度下,平均拉伸应变超过90%,平均相对电阻变化超过600%,导电性能较好。
Flexible conductive material has good flexibility and electrical conductivity,and is widely used in medical,wearable devices and sensors.The MAX phase material Ti_(3)AlC_(2)is prepared by vacuum pressureless sintering process,and the purity of the sintered product is as high as 99%.The MXene material is prepared by liquid-phase chemical etching method.Finally,Ti_(3)C_(2)T_(x)is compounded with polydimethylsiloxane(PDMS)by the swelling penetration method,and the flexible conductive composite material of Ti_(3)C_(2)T_(x)/PDMS is successfully prepared.The structures of MAX and MXene are characterized by scanning electron microscopy(SEM)and X-ray diffractometer(XRD),and the mechanical and electrical properties of pure PDMS and MXene/PDMS composites are tested.The results show that the tension-deformation pattern,elastic modulus,tensile strength and elongation at break of Ti_(3)C_(2)T_(x)mixed in PDMS have no significant difference compared with that of pure PDMS,and the mechanical properties are basically similar to those of pure PDMS.Under experimental conditions,the average tensile strain exceeds 90%and the average relative resistance chang exceeds 600%,which indicates good conductivity.
作者
邓玉宵
张豪
杨天爱
黄江涛
朱宇
严明
DENG Yuxiao;ZHANG Hao;YANG Tianai;HUANG Jiangtao;ZHU Yu;YAN Ming(College of Materials and Chemical Engineering,Hubei University of Technology,Wuhan 430068,Hubei,China;Collaborative Innovation Center of Green Light-Weight Materials and Processing,Hubei University of Technology,Wuhan 430068,Hubei,China;Hubei Provincial Key Laboratory of Green Materials for Light Industry,Wuhan 430068,Hubei,China)
出处
《能源化工》
CAS
2023年第2期34-38,共5页
Energy Chemical Industry