期刊文献+

靶向降解结核分枝杆菌蛋白技术的研究进展

Research progress of targeted degradation of Mycobacterium tuberculosis proteins
原文传递
导出
摘要 结核分枝杆菌所引起的传染性疾病结核病仍然是当前对人类生命安全的重大威胁之一。近年来以贝达喹啉为代表的小分子抑制剂的不断探索为结核病领域注入新的活力。但小分子抑制剂在临床用药过程中,不可避免地都会发生获得性耐药,靶向蛋白降解(TPD)作为一种新的药理学机制,通过降解而不是抑制蛋白质靶点来实现药效,利用TPD理念发展抗结核药物对于解决耐药性可能会是一个优秀的策略。本文综述了结核分枝杆菌自身的蛋白降解途径如Pup-蛋白酶体系统、ClpP-ClpC1复合酶系统等,并对上述策略未来进一步发展成TPD药物进行了归纳与展望。 Tuberculosis(TB),an infectious disease caused by Mycobacterium tuberculosis(Mtb),is still one of the significant threats to human life.In recent years,the continuous exploration of small molecule inhibitors represented by bedaquinoline has brought new vitality into the field of tuberculosis.However,small molecule inhibitors will inevitably occur acquired drug resistance during clinical medication.As a new pharmacological mechanism,targeted protein degradation(TPD)achieves efficacy by destroying rather than inhibiting protein targets.It might be an excellent strategy to develop anti-tuberculosis drugs based on the TPD concept to solve drug resistance.This article reviews the protein degradation pathways of Mtb,such as the Pup proteasome system and the ClpP-ClpC1 complex enzyme system.The future development of these strategies into TPD drugs was prospected and summarized.
作者 徐蔚军 于丽芳 XU Wei-jun;YU Li-fang(Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development,School of Chemistry and Molecular Engineering,East China Normal University,Shanghai 200062,China)
出处 《药学学报》 CAS CSCD 北大核心 2023年第5期1221-1231,共11页 Acta Pharmaceutica Sinica
基金 国家自然科学基金资助项目(21778019,22107031)。
关键词 结核分枝杆菌 耐药 靶向蛋白降解 酪蛋白水解肽酶系统 BacPROTAC Mycobacterium tuberculosis drug resistance targeted protein degradation caseinolytic peptidase system BacPROTAC
  • 相关文献

参考文献2

二级参考文献46

  • 1Gandotra S, Lebron M B, Ehrt S. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxidea. PLoS Pathogens, 2010, 6(8): e1001040.
  • 2Nathan C, Shiloh M U. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA, 2000, 97(16): 8841-8848.
  • 3Gandotra S, Schnappinger D, Monteleone M, et al. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med, 2007, 13(12): 1515-1520.
  • 4Lamichhane G, Raghunand T R, Morroson N E, et al. Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing stain that persistFs in host tissues. J Infec Disea, 2006, 194(9): 1233-1240.
  • 5Mitchison D A. Tuberculosis hits back. Nature, 2004, 427(22): 295.
  • 6Ginsberg A M, Spigelman M. Challenges in tuberculosis drug research and development. Nature Medicine, 2007, 13(3): 290-294.
  • 7Lin G, Li D Y, Carvalho L P S, et al. Inhibitors selective for mycobacterial versus human proteasomes. Nature, 2009, 464 (1): 621-626.
  • 8Lin G, Li D Y, Chidawanyika, et al. Fellutamide B is a potent inhibitor of the Mycobacterium tuberculosis proteasome. Arch Biochem Biopyhs, 2010, 501:214-220.
  • 9Knipfer N, Shrader T E. Inactivation of the 20S proteasomc in Mycobacterium Smegmatis. Mol Microbio, 1997, 25(2): 375 383.
  • 10Baumeister W, Walz J, Zu F, et al. The proteasome: Paradigm of a self-Compartmentalizing protease. Cell, 1998, 92(3): 367-380.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部