期刊文献+

无人机群辅助的数据采集能耗优化方法 被引量:1

Optimization Method for Energy Consumption in Data Acquisition Assisted by UAV Swarms
下载PDF
导出
摘要 针对无线传感器网络(WSN)中数据采集的安全性和能耗问题,该文提出一种无人机(UAV)群辅助的数据采集能耗优化方法。该方法通过优化无人机的数量、高度和WSN中数据传输数量降低系统总能耗。首先,针对WSN数据采集,提出一种基于信誉值的数据双层压缩算法。该算法根据地理位置将传感器分簇,簇内传感器分为簇头和簇成员,簇成员负责训练预测模型并发送给簇头;簇头则负责模型的筛选、聚合以及信誉值更新,并将聚合结果发送给无人机;其次,针对无人机群数据收集,提出一种无人机优化部署算法,该算法将无人机部署问题转化为圆包装问题,通过动态调整无人机数量,最小化无人机群网络总能耗;同时,针对数据采集过程,在无人机群建立了私有区块链用于存储采集数据,保证了数据的安全性;最后,基于伯克利大学联合研究实验室数据集对所提方法进行验证,仿真结果表明该方法能实现无人机的最优部署,同时具有误差小、能耗低及安全性高的优势。 To ensure security and reduce energy consumption for data acquisition in Wireless Sensor Network(WSN),Unmanned Aerial Vehicle(UAV)swarms-aided energy consumption optimization for data acquisition algorithm is proposed.The total energy consumption of the system is reduced by optimizing the number of UAVs,the height and the number of data transmissions in the WSN according to this algorithm.Firstly,for data acquisition in WSN,a reputation based data dual compression algorithm is proposed,which divides sensors into clusters according to geographic locations.In a cluster,there are one cluster head which is responsible for model selection,aggregation,and reputation update,and several cluster members which are responsible for training the prediction model and send it to the cluster head.Secondly,a UAV deployment optimization algorithm is proposed to minimize energy consumption of UAV swarms,which is transformed into a circular packing problem and solved by dynamically adjusting the number of UAVs.Moreover,a private blockchain is enabled in the UAV swarm to improve the security of the data acquisition process.Finally,the proposed method is verified by Berkeley Research Lab dataset and simulation results show that this method could optimize the deployment of UAVs,achieve small error,low energy consumption and high security.
作者 黄晓舸 何勇 陈前斌 张杰 HUANG Xiaoge;HE Yong;CHEN Qianbin;ZHANG Jie(College of Communication and Information Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2023年第6期2054-2062,共9页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61831002) 重庆市科委重庆市基础研究与前沿探索项目(cstc2018jcyjAx0383)。
关键词 无人机 无线传感器网络 数据采集 区块链 Unmanned Aerial Vehicle(UAV) Wireless Sensor Network(WSN) Data acquisition Blockchain
  • 相关文献

参考文献1

二级参考文献8

  • 1谢志军,王雷,林亚平,陈红,刘永和.传感器网络中基于数据压缩的汇聚算法[J].软件学报,2006,17(4):860-867. 被引量:32
  • 2刘向宇,王雅哲,杨晓春,王斌,于戈.面向无线传感器网络的流数据压缩技术[J].计算机科学,2007,34(2):141-143. 被引量:10
  • 3周四望,林亚平,张建明,欧阳竞成,卢新国.传感器网络中基于环模型的小波数据压缩算法[J].软件学报,2007,18(3):669-680. 被引量:41
  • 4Puthenpurayil S and Ruirui G, Bhattacharyya S S. Energy-aware data compression for wireless sensor networks [C]. IEEE International Confererce on Acoustics, Speech and Signal Processing, 2007, 2: 15-20.
  • 5Wang Y C, Hsieh Y Y, and Tseng Y C. Compression and storage schemes in a sensor network with spatial and temporal coding techniques [C]. Vehicular Technology Conference, VTC Spring 2008, IEEE, Singapore, 2008: 148-152.
  • 6Acimovic J, Cristescu R, and Lozano B. Efficient distributed multi-resolution processing for data gathering in sensor networks [C]. Proc.of the Int'l Conf. on Acoustics, Speech, and Signal Processing, Piscataway: IEEE, 2005: 837-840.
  • 7Cristescu R, Lozano B, and Vetterli M, et al.. On the interaction of data representation and routing in sensor networks IC]. Proc. of the Int'l Conf. on Acoustics, Speech, and Signal Processing, Piscataway: IEEE, 2005: 1109-1112.
  • 8罗武胜,鲁琴,杜列波.基于LBT的无线传感器网络多节点协同图像压缩算法[J].传感技术学报,2008,21(9):1600-1604. 被引量:6

共引文献11

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部