摘要
疫情常态化背景下,非接触式人机交互在医疗、健康领域蕴藏着巨大的应用前景,其中利用手势识别方法实现非接触式的仪器操控逐渐成为研究热点。对此,该文提出一种利用毫米波雷达双视角时序特征融合来实现手势数字识别的方法,以提高手势识别的鲁棒性和准确性。首先,该文同步采集正面、侧面视角的毫米波雷达手势数字0~9的时序回波数据;接着,对各视角的数据进行预处理,实现杂波抑制、数据压缩;随后提取两方向的距离、速度的时序特征,并就特征的时间相关性构建嵌入注意力机制的双视角时序特征融合网络(ADVFNet);最后,基于实测数据集完成了网络训练、时序特征融合、手势数字识别等步骤。实验结果表明,本文所提方法在实测数据集上识别准确率达到95%,网络收敛速度快、模型泛化能力好,与现有方法相比具有一定优势,为后续毫米波雷达人机交互提供了新思路。
Against the epidemic background,the contactless human-computer interaction has great application prospects in the medical and health field.Among them,using gesture recognition method to realize non-contact instrument control is becoming the hotspot.To improve the robustness and accuracy,a method is proposed to realize the digital gesture recognition based on dual-view sequential feature fusion of millimeter-wave radars in this paper.Firstly,time series echo data of gesture numbers 0~9 from positive and side perspectives are collected synchronously.Secondly,datasets from different perspectives are preprocessed by implementing clutter suppression and data compression.Furthermore,the Attention embedded Dual View Fusion Network(ADVFNet)is constructed based on the intrinsic correlation of temporal features.Finally,using the collected dataset,the task of training network,fusing sequential feature,and recognizing digital gesture could be completed.Experimental results show that the recognition accuracy of proposed method is about 95%,which has faster network convergence and better model generalization ability compared with several existing methods.Moreover,the method could provide a new idea for future human-computer interaction of millimeter-wave radars.
作者
冯翔
刘涛
崔文卿
吴沐府
李风从
赵宜楠
FENG Xiang;LIU Tao;CUI Wenqing;WU Mufu;LI Fengcong;ZHAO Yinan(School of Information Science and Engineering,Harbin Institute of Technology,Weihai 264209,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2023年第6期2134-2143,共10页
Journal of Electronics & Information Technology
基金
山东省自然科学基金(ZR2019BF037)。
关键词
毫米波雷达
手势识别
双视角融合网络
注意力机制
Millimeter-wave radar
Gesture recognition
Dual-view fusion network
Attention mechanism