期刊文献+

基于图神经网络的行人轨迹预测研究综述 被引量:1

A survey of pedestrian trajectory prediction based on graph neural network
下载PDF
导出
摘要 随着计算机视觉和自动驾驶技术的快速发展,自动感知、理解和预测人类行为的能力变得越来越重要。各类传感器的普及使得社会中产生了大量运动物体的位置数据。基于这些数据预测行人的运动轨迹在社交预测等多个领域都有着极大的价值。为了深入了解这方面的发展,对基于图神经网络的行人轨迹预测方法进行了综述,从多个角度比较、分析和总结了行人轨迹预测的图神经网络算法,讨论了不同算法在该领域的研究与发展;在目前的公共数据集上进行了对比和分析,介绍了相应性能指标,给出了不同算法的性能比较结果,提出了目前研究仍存在的问题,拓展研究思路和方法;展望了未来可能出现的研究方向。 With the rapid development of the technology of computer vision and autonomous driving,the ability to sense,understand and predict human behavior is becoming more and more important.The popularity of various sensors has generated a large amount of position data of moving objects in society.Predicting the movement trajectory of pedestrians based on these data has great value in social prediction and other fields.To gain insight into the development in this area,a literature review is conducted on graph neural network-based pedestrian trajectory prediction methods.The graph neural network algorithms for pedestrian trajectory prediction are compared,analyzed and summarized from multiple perspectives,and the research and development of different algorithms in this field are discussed.The comparison and analysis are carried out on the current public data sets,an overview of the corresponding performance indicators is provided,and the performance comparison results of different algorithms are given.At the same time,this paper puts forward the research problems that still exist and looks forward to the possible research directions in the future.
作者 曹健 陈怡梅 李海生 蔡强 CAO Jian;CHEN Yi-mei;LI Hai-sheng;CAI Qiang(School of Computer Science and Engineering,Beijing Technology and Business University,Beijing 100048;Beijing Key Laboratory of Big Data Technology for Food Safety,Beijing 100048,China)
出处 《计算机工程与科学》 CSCD 北大核心 2023年第6期1040-1053,共14页 Computer Engineering & Science
基金 国家自然科学基金(61877002) 北京市教委-市自然基金委联合资助项目(KZ202110011017) 北京市自然科学基金-丰台轨道交通前沿研究联合基金资助项目(L191009)。
关键词 行人轨迹预测 视觉预测 图神经网络 深度神经网络 自动驾驶 pedestrian trajectory prediction visual prediction graph neural network deep neural network autonomous driving
  • 相关文献

参考文献9

二级参考文献46

  • 1徐兴,汤赵,王峰,陈龙.基于变权重系数的分布式驱动无人车轨迹跟踪[J].中国公路学报,2019,32(12):36-45. 被引量:22
  • 2WEI L Y, ZHENG Y, PENG W. Constructing popular mutes from uncertain trajectories [ C]/! Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012:195 -203.
  • 3MARMASSE N, SCHMANDT C. A user-centered location model [ J]. Personal and Ubiquitous Computing, 2002, 6(5) : 318 - 321.
  • 4ASHBROOK D, STARNER T. Using GPS to learn significant loca- tions and predict movement across multiple users [ J]. Personal U- biquitous Computing, 2003, 7(5): 275-286.
  • 5TIESYTE D, JENSEN C S. Similarity-based prediction of travel times for vehicles traveling on known routes [ C]/! Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2005:1 -10.
  • 6ZIEBART B D, MAAS A L, DEY A K, et al. Navigate like a cab- bie: probabilistic reasoning from observed context-aware behavior [ C]//Proceedings of the 10th International Conference on Ubiqui- tous Computing. New York: ACM Press, 2008: 322- 331.
  • 7HORVITZ E, KRUMM J. Some help on the way: opportunistic rou- ting under uncertainty [ C]// Proceedings of the 14th International Conference on Ubiquitous Computing. New York: ACM Press, 2012:371-380.
  • 8YUAN J, ZHENG Y, XIE X, et al. Driving with knowledge from the physical world [ C]//Proceedings of the 17th ACM SIGKDD In- ternational Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2011:316 -324.
  • 9赵越,刘衍珩,余雪岗,魏达,单长伟,赵洋.基于模式挖掘与匹配的移动轨迹预测方法[J].吉林大学学报(工学版),2008,38(5):1125-1130. 被引量:7
  • 10郭黎敏,丁治明,胡泽林,陈超.基于路网的不确定性轨迹预测[J].计算机研究与发展,2010,47(1):104-112. 被引量:15

共引文献117

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部