摘要
常规方法设置调峰机组约束条件时,忽略了机组出力时长的约束,导致调峰机组启停后,电网峰谷差率较高、日负荷率较低,对此提出火力发电厂机组深度调峰运行的自启停控制优化方法。将参与深度调峰的火力发电厂机组自启停过程划分为6个阶段,采用线性损失因子法,计算火电机组启停能耗目标函数,设置机组发电出力约束条件,包括爬坡能力、发电量、出力时长,构成火力发电厂机组自启停模型,再采用遗传算法,求取模型最优解,得到机组自启停各个阶段的最优控制时间,完成调峰机组运行优化。以某火力发电厂的电力系统为例,选择近期典型日的火电机组实际开机情况作为基础数据,设置对比实验,结果表明该设计方法完成了自启停控制,减少了电网峰谷差率,提高了日负荷率,调峰效果更加明显。
When the conventional method sets the constraint condition of the peak shaving unit,the constraint of the output time of the unit is ignored,resulting in a high peak-valley difference rate and a lower daily load ratio of the power grid after the peak shaving unit starts and stops.Therefore,an auto-start-stop control optimization method for deep peak shaving operation of units in thermal power plant is proposed.The auto-start-stop control process of thermal power plant units participating in deep peak shaving is divided into six stages.The linear loss factor method is used to calculate the energy consumption objective function of thermal power unit start-up and shutdown.The constraints of the power generation output of the unit,including the climbing capacity,power generation and output time,are set to form the auto-start-stop model of the thermal power plant.Then,the genetic algorithm is used to obtain the optimal solution of the model,and the optimal control time of each stage of the unit from auto-start-stop is obtained,and the operation optimization of the peak shaving unit is completed.Taking the power system of a thermal power plant as an example,the actual start-up of thermal power units on a typical day in the near future is selected as the basic data,and a comparative experiment is set up.The results show that the design method completes the auto-start-stop control,reduces the peak-valley difference rate of the power grid,improves the daily load ratio,and has a more obvious peak regulation effect.
作者
贺刚
HE Gang(Guoneng Ningdong No.1 Power Generation Co.,Ltd.,Yinchuan 750408,China)
出处
《电工技术》
2023年第9期203-206,209,共5页
Electric Engineering
关键词
火电机组
能源消耗
自启停阶段
余留负荷
约束条件
控制时间
thermal power unit
energy consumption
start and stop stage
residual load
constraint conditions
control time