摘要
6063铝合金管件具有质轻、比强度高和耐腐蚀等优点,但是其在常温下塑性变形时容易开裂。采用两种管件电磁胀形方法,即无轴向加压管件胀形(方案1)和双侧刚性驱动轴向加压管件胀形(方案2)。与方案1相比,当驱动板直径增加至Φ110 mm时,方案2中管件的最大胀形高度提高了100%。建立了管件电磁胀形的3D有限元仿真模型,得到模拟和实验结果的最大误差小于10%。模拟发现:在方案2中管件中部节点的周向应变稍小于方案1的情况下,其厚向应变数值明显更小,则在胀形高度接近的情况下,方案2中管件的减薄率更小;在方案1和方案2的最大厚向应变数值相近(接近破裂)的情况下,方案2中的管件的最大周向应变增加了75.2%,管件端部和中部的压强比值为36.95。
6063 aluminum alloy tube has the advantages of light weight,high specific strength and corrosion resistance,but it is easy to crack during plastic deformation at room temperature.Therefore,two tube electromagnetic bulging methods were adopted,that is,tube bulging without axial compression(scheme 1)and tube bulging with bidirectional rigid drive axial compression(scheme 2).Compared with scheme 1,when the diameter of the driving plate increased toΦ110 mm,the maximum bulging height of tube in scheme 2 increased by 100%.Furthermore,the 3D finite element simulation model of tube electromagnetic bulging was established,and the maximum error between simulation and experimental results was less than 10%.The simulation find that when the circumferential strain of tube middle node in scheme 2 is slightly smaller than that in scheme 1,the thickness strain value is significantly smaller.When the bulging height is close,the thinning rate of tube in scheme 2 is smaller.When the maximum thickness strains of scheme 1 and scheme 2 are similar(close to rupture),the maximum circumferential strain of tube in scheme 2 increases by 75.2%,and the pressure ratio between the end and middle of the tube is 36.95.
作者
孙晓明
纪亚楠
王抒
周楠
崔晓辉
Sun Xiaoming;Ji Yanan;Wang Shu;Zhou Nan;Cui Xiaohui(College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China;Light Alloy Research Institute,Central South University,Changsha 410083,China)
出处
《锻压技术》
CAS
CSCD
北大核心
2023年第5期31-38,共8页
Forging & Stamping Technology
基金
国家自然科学基金资助项目(52275394)
中南大学高性能复杂制造国家重点实验室开放课题研究基金资助项目(ZZYJKT2020-02)。
关键词
电磁胀形
6063-T6铝合金
双向轴压
变形轮廓
压强比
electromagnetic bulging
6063-T6 aluminum alloy
bidirectional axial compression
deformation profile
pressure ratio