期刊文献+

CT图像重建滤波器的插值核函数构造法及实例

CT Image Reconstruction Filter Design Method by Interpolation Kernel Functions and Examples
原文传递
导出
摘要 在经典Radon逆变换的基础上,提出了一种实现Radon逆变换的二阶差商反投影(Second-order Divided-difference Back Projection,SDBP)方法.对于离散投影数据,利用插值法将离散的投影值采样序列转化为连续的投影函数,并根据SDBP公式进一步推导出一种基于插值核函数构造的滤波器设计模型.作为该模型的应用,文章套用三角形函数得到了一类新型滤波器.相比传统的滤波器,新型滤波器具有调节性能的可控参数,可以根据实际需求增强某些特性,从而能获得更加理想的重建图像. Based on the classical inverse Radon transform,the Second-order Divideddifference Back Projection(SDBP)method for realizing inverse Radon transform is proposed in this paper.For discrete projection data,the discrete projection sampling sequence is transformed into continuous projection function by data interpolation.Through logical derivation,a filter design model based on interpolation kernel functions is proposed by using SDBP formula.As an application of the flter design model,a new kind of filter is obtained by applying triangle function.Compared with traditional filters,the new filter has controllable parameters to adjust the performance.Such that some features can be enhanced on the basis of actual needs,so as to obtain better reconstructed images.
作者 蒋一鸣 邹晶 胡晓东 赵金涛 JIANG Yiming;ZOU Jing;HU Xiaodong;ZHAO Jintao(School of Automation,Jiangsu University of Science and Technology,Zhenjiang 212100;School of Precision Instrument and Opto-Electronics Engineering,Tianjin University,Tianjin 300072;School of Automation and Electrical Engineering,Tianjin University of Technology and Education,Tianjin300222)
出处 《系统科学与数学》 CSCD 北大核心 2023年第4期829-840,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金面上项目(61771328) 国家重点研发计划(2017YFB1103900)资助课题。
关键词 Radon逆变换 CT 滤波反投影 插值核函数 HILBERT变换 滤波器设计 三角形函数 Inverse Radon transform CT FBP interpolation kernel function Hilbert transform filter design triangle function.
  • 相关文献

参考文献5

二级参考文献21

  • 1许寒,刘希顺,王博亮.光线投射算法中重采样的设计和实现[J].中国图象图形学报(A辑),2003,8(12):1427-1431. 被引量:7
  • 2Hsieh J. Computed tomography principles,design,artifacts,and recent advances[M].WA:SPIE Optical Engineering Press,2003.
  • 3Kak C,Slaney M. Principles of computerized tomography imaging[M].WA:Society for Industrial and Applied Mathematics,2001.
  • 4Feldkamp A,Davis L,Kress J. Practical cone-beam algorithm[J].Journal of the Optical Society of America,1984,(06):612-619.
  • 5Katsevich A. 3PI Algorithms for helical computer tomography[J].Advances in Applied Mathematics,2006,(03):213-250.
  • 6曾更生.医学图像重建[M]北京:高等教育出版社,2009.
  • 7Wei YC,Wang G,Hsieh J. An intuitive discussion on the ideal ramp filter in computed tomography (Ⅰ)[J].Computers and Mathematics with Applications,2005,(05):731-740.
  • 8王明泉.信号与系统[M]北京:科学出版社,2008.
  • 9庄天戈.CT原理与算法[M]上海:上海交通大学出版社,1992.
  • 10高洁,杨波,孔斌.三维锥束重建中滤波器的设计[J].计算机系统应用,2011,20(3):116-120. 被引量:1

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部