期刊文献+

核壳结构CdS/ZnS@rGA的制备及光催化性能研究

Preparation and photocatalytic properties of core-shell CdS/ZnS@rGA
下载PDF
导出
摘要 为研究纳米CdS/ZnS@rGA复合材料在可见光下的光催化性能,采用一步溶剂热法合成了以ZnS为壳的CdS/ZnS核壳纳米粒子,将CdS/ZnS核壳纳米粒子附着在rGO纳米片上,并组装成CdS/ZnS@rGA复合气凝胶,用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等对样品进行了表征,通过亚甲基蓝(MB)的光催化降解实验表明:CdS/ZnS@rGA复合气凝胶的形成不仅可以提高CdS的光稳定性,还可以增强对MB吸附能力,同时对MB的降解有明显的促进作用。可见光反应90 min,50 mg的CdS/ZnS@rGA对100 mL 20 mg/L MB的去除率最高达到99%。经过5次循环实验,该材料仍具有较好的可重复利用性。 In order to study the photocatalytic performance of nano-CdS/ZnS@rGA composites under visible light,CdS/ZnS core-shell nanoparticles with ZnS shell were synthesized by one-step solvothermal method.CdS/ZnS core-shell nanoparticles were attached to rGO nanosheets and assembled into CdS/ZnS@rGA composite aerogels.The samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).According to the photocatalytic degradation experiments of methylene blue(MB),the formation of CdS/ZnS@rGA composite aerogelsnot only improved the photostability of CdS,but also enhanced the adsorption capacity of MB,whilegreatly promoting the degradation of MB.After 90 min of visible light reaction,the removal rate of 100 mL 20 mg/L MB by 50 mg CdS/ZnS@rGA was up to 99%.After five cycles of experiments,the material still maintained good reusability.
作者 邹明 丁颖 刘海涛 徐丽慧 潘虹 ZOU Ming;DING Ying;LIU Haitao;XU Lihui;PAN Hong(School of Textiles and Fashion,Shanghai University of Engineering Science,Shanghai 201600,China)
出处 《材料科学与工艺》 CAS CSCD 北大核心 2023年第3期88-96,共9页 Materials Science and Technology
基金 国家自然科学基金资助项目(51703123)。
关键词 CDS ZNS RGA 光催化 降解 亚甲基蓝 CdS ZnS rGA photocatalysis degradation methylene blue
  • 相关文献

参考文献2

二级参考文献21

  • 1Matthew J A, Vincent C T, Richard B K.Honeycomb carbon:A review of graphene[J].Chemical Reviews, 2010, 110(1):132-145.
  • 2Rao C N, Sood A K, Subrahmanyam K S, et al.Graphene:The new two-dimensional nanomaterial[J].Angewandte Chemie-International Edition, 2009, 48(42):7752-7777.
  • 3Geim K.Graphene:Status and prospects[J].Science, 2009, 324(5934):1530-1534.
  • 4Chen J H, Jang C, Xiao S D, et al.Intrinsic and extrinsic performance limits of graphene devices on SiO2[J].Nature Nanotechnology, 2008, 3(4):206-209.
  • 5Alexander A B, Suchismita G, Bao W Z, et al.Superior thermal conductivity of single-layer grapheme[J].Nano Letters, 2008, 8(3):902-907.
  • 6Lee C G, Wei X D, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer grapheme[J].Science, 2008, 321(5887):385-388.
  • 7Park SJ, Ruoff R S.Chemical methods for the production of graphenes[J].Nature nanotechnology, 2009, 4(4):217-224.
  • 8Li D, Kaner R B.Graphene-based materials[J].Science, 2008, 320(5880):1170-1171.
  • 9Dikin D A, Tankovich S S, Zimney E J, et al.Preparation and characterization of graphene oxide paper[J].Nature, 2007, 448(7152):457-460.
  • 10Chen C M, Yang Q H, Yang Y G, et al.Self-assembled free-standing graphite oxide membrane[J].Advanced Materials, 2009, 21(29):3007-3011.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部