期刊文献+

刀具磨损状态监测技术研究现状

Research status of tool wear monitoring technology
下载PDF
导出
摘要 随着工业4.0时代的到来,智能化监测技术在智能制造业领域变得愈加重要。本文围绕近年来国内外刀具磨损状态监测技术,分别从信号采集、特征提取、模式识别三个方面展开综述,对检测信号的优点与不足加以比较与归纳,论述了信号处理与提取技术的原理。阐述目前刀具磨损状态监测研究及应用难点,并展望了未来发展趋势,同时期望通过引入以深度学习为代表的现代算法,以提高刀具磨损的鲁棒性和准确度。 With the advent of the Industry 4.0 era,intelligent monitoring technology has become increasingly important in the field of smart manufacturing.In this paper,the technology of tool wear monitoring at home and abroad in recent years were reviewed from three aspects:signal monitoring method,signal processing and extraction,and state recognition,the advantages and disadvantages of the detection signal were compared and summarized,and the principle of signal processing and extraction technology was discussed.The research and application difficulties of tool wear condition monitoring are analyzed,and the future research directions were prospected.At the same time,the modern algorithms represented by deep learning were expected to be introduced,in order to improve the robustness and accuracy of tool wear.
作者 刘鸿智 LIU Hongzhi(Hebi Polytechnic,Hebi 458030,Henan,China)
出处 《新疆农机化》 2023年第3期17-20,共4页 Xinjiang Agricultural Mechanization
基金 鹤壁职业技术学院重点课题“一种刀具磨损在线监测系统的技术研究与开发”(2022-KJZD-008)。
关键词 刀具磨损状态监测 信号采集 特征提取 模式识别 Tool wear monitoring Signal acquisition Feature extraction Pattern recognition
  • 相关文献

参考文献8

二级参考文献80

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部